Letters in Mathematical Physics

, Volume 31, Issue 2, pp 101–110 | Cite as

Quantum affine algebras and universalR-matrix with spectral parameter

  • Yao-Zhong Zhang
  • M. D. Gould


Using the previously obtained universalR-matrix for the quantized nontwisted affine Lie algebras U q (A 1 (1) ) and U q (A 2 (1) ), we determine the explicitly spectral dependent universalR-matrix for the corresponding quantum Lie algebras U q (A1) and U q (A2). As applications, we reproduce the well known results in the fundamental representations and we also derive an extremely explicit formula of the spectral-dependentR-matrix for the adjoint representation of U q (A2), the simplest nontrivial case when the tensor product decomposition of the representation with itself has nontrivial multiplicity.

Mathematics Subject Classifications (1991)

81R10 17B37 16W30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Drinfeld, V. G.,Proc. ICM, Berkeley 1, 798 (1986).Google Scholar
  2. 2.
    Jimbo, M.,Lett. Math. Phys. 10, 63, (1985);11 (1986) 247;Comm. Math. Phys. 102, 247 (1986).Google Scholar
  3. 3.
    Reshetikhin, N., Quantized universal enveloping algebras, the Yang-Baxter equation and inveriants of links: I, II, Preprints LOMI E-4-87, E-17-87.Google Scholar
  4. 4.
    Jones, V. F. R.,Internat. J. Moden. Phys. B 4, 701 (1990).Google Scholar
  5. 5.
    Zhang, R. B., Gould, M. D., and Bracken, A. J.,Nuclear Phys. 354, 625 (1991).Google Scholar
  6. 6.
    Khoroshkin, S. M., and Tolstoy, U. N.,Lett. Math. Phys. 24, 231 (1992);Funktsional Anal. i Prilozhen 26, 85 (1992).Google Scholar
  7. 7.
    Zhang, Y.-Z. and Gould, M. D.,Lett. Math. Phys. 29, 19 (1993).Google Scholar
  8. 8.
    Zhang, Y.-Z. and Gould, M. D., Quantum affine algebras and universalR-Matrix with spectral parameter, II, Preprint UQMATH-93-06, July 1993, hep-th/9307008.Google Scholar
  9. 9.
    Davies, B., Foda, O., Jimbo, M., Miwa, T., and Nakayashiki, A.,Comm. Math. Phys. 151, 89 (1993); Altschuler. D. and Davies, B., Quantum loop modules and quantum spain chains, Preprint hepth/9305135.Google Scholar
  10. 10.
    Babelon, O. and Bonora, L.,Phys. Lett. B 244, 220 1990); Toppan, F. and Zhang, Y.-Z.,Phys. Lett. B 292, 67 (1992).Google Scholar
  11. 11.
    Frenkel, I. B. and Reshetikhin, N.,Comm. Math. Phys. 146 1 (1992);180 247 (1989).Google Scholar
  12. 12.
    Hou, B.-Y., Hou, B.-Y., Ma, Z.-Q., and Yin, Y.-D.,J. Math. Phys. 32, 2210 (1991).Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Yao-Zhong Zhang
    • 1
  • M. D. Gould
    • 1
  1. 1.Department of MathematicsUniversity of QueenslandBrisbaneAustralia

Personalised recommendations