Advertisement

Letters in Mathematical Physics

, Volume 34, Issue 4, pp 343–364 | Cite as

Universal expansion of the powers of a derivation

  • M. Ginocchio
Article

Abstract

We give the expansion of the powers of the Lie operator Δ = Σλ i i in any dimension, whereλ is either a smooth function or a formal power series over an infinite set of commutatives indeterminates. We describe an algorithm for computer treatment and we give, as an example, a table for the orders 1 to 6.

Mathematics Subject Classifications (1991)

05A15 06A99 34L99 35K22 47H20 68R05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ginocchio, M. and Irac-Astaud, M., A recursive linearization process for evolution equations...,Rep. Math. Phys. 21, 245–265 (1985).Google Scholar
  2. 2.
    Steeb, W. H. and Euler, N.,Nonlinear Evolution Equations and Painlevé Test, World Scientific, Singapore, 1988.Google Scholar
  3. 3.
    Comtet, L., Une formule explicite pour les puissances successives de l'opérateur de dérivation de Lie,C. R. Acad. Sci. Paris A 276, 165–168 (1973).Google Scholar
  4. 4.
    Leroux, P. and Viennot, G., Combinatorial resolution of systems of differential equations I: ordinary differential equations, in C. Labelle and P. Leroux (eds),Actes du colloque de combinatoire énumérative, Montreal 1985 Lecture Notes in Math. 1234, Springer, New York.Google Scholar
  5. 5.
    Bergeron, F. and Reutenauer, C., Une interprétation combinatoire des puissances d'un opérateur differentiel linéaire,Ann. Sci. Math. Quebec. 11, 269–278 (1987).Google Scholar
  6. 6.
    Grossman, R. and Larson, R. G., (a) Hopf-algebraic structures of families of trees,J. Algebra 126, 184–210 (1989); (b) Solving nonlinear equations from higher order derivations in linear stages,Adv. in Math. 82, 180–202 (1990).Google Scholar
  7. 8.
    Ginocchio, M., On the bi-algebras of functional graphs, linear order extensions and differential algebras, in preparation.Google Scholar
  8. 9.
    Butcher, J. C.,The Numerical Analysis of Ordinary Differential Equations, Wiley, New York, 1986.Google Scholar
  9. 10.
    Harary, F. and Prins, G., The number of homeomorphically irreducible trees and other species,Acta Math. 101, 141–162 (1959).Google Scholar
  10. 11.
    Chiricota, Y.,Structures combinatoires et calcul symbolique, Publ. 12, LACIM, Montreal, 1992.Google Scholar
  11. 12.
    Stanley, R. P.,Enumerative Combinatorics, Vol. 1, Wadsworth, Monterey, 1986.Google Scholar
  12. 13.
    Ginocchio, M., Functionals and symmetric functions, application to nonlinear evolution equations, in preparation.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • M. Ginocchio
    • 1
  1. 1.Laboratoire de Physique Theorique et MathematiqueUniversité Paris VIIParis Cedex 05France

Personalised recommendations