Skip to main content
Log in

Fusion structures from quantum groups: II. Why truncation is necessary

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

It is shown that a finite, reflection positive, and nontruncated fusion structure on an arbitrary Hopf algebra is trivial in the sense thatq-traces coincide with ordinary traces andq-dimensions coincide with ordinary dimensions. Thus, nontruncated fusion structures are ruled out to describe the fusion rules of quantum field theories with noninteger statistical dimensions and a finite number of superselection sectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The literature on quantum group symmetry in quantum field theory is vast. The following list is by no means exhaustive: Alvarez-Gaumé, L., Gómez, C. and Sierra, G., Quantum group interpretation of some conformal field theories,Phys. Lett. B 220, 142–152 (1989); Duality and quantum groups,Nuclear Phys. B 330, 347–398 (1990); Dijkgraaf, R., Pasquier, V. and Roche, P., Quasi-quantum groups related to orbifold models, inProc. Int. Colloqium on Mod. Quantum Field Theory, TATA Institute of Fundamental Research, Bombay (1990); Fuchs, J.,Affine Lie Algebras and Quantum Groups, Cambridge University Press, Cambridge, 1992; Quantum dimensions, Preprint CERN-TH 6156/91; Quantum symmetries in the algebraic description of WZW theories, Preprint CERN-TH 6513/92; Fuchs, J. and Van Diel, P., WZW Fusion rules, quantum groups, and the modular matrixS, Nuclear Phys. B 346, 632–648 (1990); Furlan, P., Ganchev, A. Ch. and Petkova, V., Quantum groups and fusion rules multiplicities,Nuclear Phys. B 343, 205–227 (1990); Mack, G. and Schomerus, V., Conformal field algebras with quantum symmetry from the theory of superselection sectors,Comm. Math. Phys. 134, 139–196 (1990); Quasi quantum group symmetry and local braid relations in the conformal Ising model,Phys. Lett. B 267, 207 (1991); see also [2]; Moore, G. and Reshetikhin, N. Yu., A comment on quantum symmetry in conformal field theory,Nuclear Phys. B 328, 557 (1989); Pasquier, V. and Saleur, H., Common structures between finite systems and conformal field theories through quantum groups,Nuclear Phys. B 330, 523 (1990); Reshetikhin, N. Yu. and Smirnov, F., Hidden quantum symmetry and integrable perturbations of conformal field theory,Comm. Math. Phys. 131, 157 (1990).

    Google Scholar 

  2. Mack, G. and Schomerus, V., Quasi Hopf quantum symmetry in quantum theory,Nuclear Phys. B 370, 185 (1992).

    Google Scholar 

  3. Nill, F., Fusion structures from quantum groups I. Charge conjugation, Markov traces and towers of intertwiner algebras, Preprint SFB 288, FU-Berlin, Sept. 1993.

  4. Nill, F., Weyl algebras, Fourier transformations and integrals on finite dimensional Hopf algebras, Preprint SFB 288, FU-Berlin, Dec. 1992.

  5. Nill, F., A constructive quantum field theoretic approach to Chern-Simons theory,Internat. J. Mod. Phys. B 6, 2159–2198 (1992).

    Google Scholar 

  6. Kerler, T., Quantum groups, quantum categories and quantum field theory, PhD Thesis, ETH-Zürich 1992, to appear in Lecture Notes in Mathematics. See also [18].

  7. Reshetikhin, N. Yu. and Turaev, V. G., Ribbon graphs and their invariants derived from quantum groups,Comm. Math. Phys. 127, 1–26 (1990).

    Google Scholar 

  8. Reshetikhin, N. Yu. and Turaev, V. G., Invariants of 3-manifolds via link polynomials and quantum groups,Invent. Math. 103, 547–598 (1991).

    Google Scholar 

  9. Temperley, H. and Lieb, E., Relation between the percolation and the colouring problem,Proc. Roy. Soc. (London)A 322, 251 (1971).

    Google Scholar 

  10. Jones, V., Index for subfactors,Invent. Math. 72, 1–25 (1982).

    Google Scholar 

  11. Fredenhagen, K., Rehren, K. H. and Schroer, B., Superselection sectors with braid statistics and exchange algebras, I: General theory,Comm. Math. Phys. 125, 201–226 (1989).

    Google Scholar 

  12. Longo, R., Index of subfactors and statistics of quantum fields I, II,Comm. Math. Phys. 126, 217–247 (1989) and130, 285–309 (1990).

    Google Scholar 

  13. Larson, R. G. and Radford, D. E., Finite dimensional cosemi-simple Hopf algebras in characteristic zero are semisimple,J. Algebra 117, 267–289 (1988).

    Google Scholar 

  14. Larson, R. G. and Sweedler, M. E., An associate orthogonal bilinear form for Hopf algebras,Amer. J. Math. 91, 75–94 (1969).

    Google Scholar 

  15. Sweedler, M. E.,Hopf Algebras, Benjamin, New York, 1969.

    Google Scholar 

  16. Witten, E., Quantum field theory and Jones polynomial,Comm. Math. Phys. 121, 351–399 (1989).

    Google Scholar 

  17. Woronowicz, S. L., Compact matrix pseudogroups,Comm. Math. Phys. 111, 613–665 (1987).

    Google Scholar 

  18. Fröhlich, J. and Kerler, T., New version of [6], preprint ETH-Zürich, Jan. 1993.

  19. Longo, R., A duality for Hopf algebras and for subfactors.I, Preprint University of Rome ‘Tor Vergata’, 1992.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported in part by DFG, SFB 288 ‘Differentialgeometrie und Quantenphysik’.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nill, F. Fusion structures from quantum groups: II. Why truncation is necessary. Lett Math Phys 29, 83–90 (1993). https://doi.org/10.1007/BF00749724

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00749724

Mathematics Subject Classifications (1991)

Navigation