Letters in Mathematical Physics

, Volume 33, Issue 3, pp 195–206 | Cite as

Generalized Cauchy determinant formula and its applications to Coulomb gas problems

  • Florin Constantinescu


Using only elementary methods, we generalize the classical Cauchy determinant formula and indicate applications to two-dimensional systems including the neutral asymmetric Coulomb gas and conformal quantum field theory.

Mathematics Subject Classifications (1991)

82B05 82B21 82D05 81T40 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Coleman, S.,Phys. Rev. D 11, 2088 (1975).Google Scholar
  2. 2.
    Constantinescu, F. and Flume, R.,Phys. Lett. B 326, 101 (1994).Google Scholar
  3. 3.
    Deutsch, C. and Lavaud, M.,Phys. Rev. A,9, 2598 (1974).Google Scholar
  4. 4.
    Dotsenko, Vl. S. and Fateev, V. A.,Nuclear Phys. B 240, 312 (1984).Google Scholar
  5. 5.
    Fröhlich, J.,Comm. Math. Phys. 47, 233 (1976).Google Scholar
  6. 6.
    Fröhlich, J. and Seiler, E.,Helv. Phys. Acta 49, 889 (1976).Google Scholar
  7. 7.
    Hamermesh, M.,Group Theory, Addison-Wesley, New York, 1962.Google Scholar
  8. 8.
    Hua, L. K.,Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains, Amer. Math. Soc., Providence, 1963.Google Scholar
  9. 9.
    Itzykson, C. and Drouffe, J.-M.,Statistical Field Theory, vols 1, 2, Cambridge Univ. press, 1989.Google Scholar
  10. 10.
    Itzykson, C. and Zuber, J.-B.,Quantum Field Theory, McGraw-Hill, New York, 1980.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Florin Constantinescu
    • 1
  1. 1.Fachbereich MathematikJohann Wolfgang Goethe Universität FrankfurtFrankfurt am MainGermany

Personalised recommendations