Advertisement

Combustion, Explosion and Shock Waves

, Volume 22, Issue 2, pp 199–206 | Cite as

Instability of frontal conditions in the propagation of single-stage chemical reactions

  • V. S. Berman
Article

Keywords

Dynamical System Mechanical Engineer Frontal Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. N. Kolmogorov, I. G. Petrovskii, and N. S. Piskunov, Byul. Mosk. Gos. Univ., Section A, Part 1, No. 6, 1 (1937).Google Scholar
  2. 2.
    R. Fisher, Ann. Eugen.,7, 355 (1937).Google Scholar
  3. 3.
    Ya. B. Zel'dovich, Zh. Fiz. Khim.,22, 27 (1948).Google Scholar
  4. 4.
    Ya. B. Zel'dovich et al., Mathematical Theory of Combustion and Explosions [in Russian], Nauka, Moscow (1980).Google Scholar
  5. 5.
    A. S. Dikanskii, Diffusion Equations with Nonlinear Kinetics [in Russian], VINITI (1980), No. 1405-80.Google Scholar
  6. 6.
    A. I. Vol'pert, Wave Solutions of Parabolic Equations. Preprint OIKhF Akad. Nauk SSSR, [in Russian], Chernogolovka (1983).Google Scholar
  7. 7.
    Ya. I. Kanel', Dokl. Akad. Nauk SSSR,132, 268 (1960).Google Scholar
  8. 8.
    D. Aronson and H. Weinberger, Lect. Notes Math.,446, 856 (1975).Google Scholar
  9. 9.
    G. I. Barenblatt and Ya. B. Zel'dovich, Prikl. Mat. Mekh.,21, 856 (1957).Google Scholar
  10. 10.
    D. H. Sattinger, Adv. Math.,22, 312 (1976).Google Scholar
  11. 11.
    V. V. Golubov, Readings in the Analytical Theory of Differential Equations [in Russian], GITGL, Moscow-Leningrad (1941).Google Scholar
  12. 12.
    E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations [Russian translation], Part I, IL, Moscow (1960).Google Scholar
  13. 13.
    P. M. Morse and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, New York (1975).Google Scholar
  14. 14.
    V. S. Berman, Doctoral Dissertation, Moscow (1981).Google Scholar
  15. 15.
    A. F. Nikiforov and V. B. Uvarov, Special Functions of Mathematical Physics [in Russian], Nauka, Moscow (1978).Google Scholar
  16. 16.
    G. Beitmen and A. Erdein, Higher Transcendental Functions [in Russian], Vol. 1, Nauka, Moscow (1973).Google Scholar
  17. 17.
    A.-H. Nayfeh, Perturbation Methods, Wiley, New York (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • V. S. Berman

There are no affiliations available

Personalised recommendations