Skip to main content
Log in

Hot-body ignition limits for air-fuel mixtures

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Summary

  1. 1.

    The hot-body ignition temperatures under free convection conditions and the dependence of TS on composition were measured for air mxtures of hydrogen, acetylene, carbon disulfide, ethylene glycol ethyl ether, and diethyl ether.

  2. 2.

    It was established that ignition can occur at TS to 180°C which is incompatible with a thermal mechanism. Low-temperature ignition is explained by the formation of cold flames associated with the development of degenerate branching of the chain-reaction process. A reaction of sufficient duration for this occurs only under conditions of free convection.

  3. 3.

    In many cases TS is evidently affected by a two-stage mechanism; in this case the minimum TS may correspond to compositions close to the critical compositons for flame propagation.

  4. 4.

    The results of the investigation confirm the need for a reexamination of existing safety regulations. Permissible temperatures should be determined under hot-body ignition conditions corresponding to the actual use of equipment when cold-flame ignition is a possibilitv.

  5. 5.

    The following permissible temperatures, which incorporate the necessary safety factor, may be recommended: for CS2 and (C2H5)2O−150°, for C2H2−300°, for H2 and ethylene glycol ethyl ether −500°, for B-70 gasoline−700°, and for CH4−800°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ya. B. Zel'dovich, ZhETF, 9, 1530, 1939.

    Google Scholar 

  2. L. N. Khitrin and S. A. Gol'denberg, DAN SSSR, 103, 277, 1955.

    Google Scholar 

  3. A. I. Rozlovskii, DAN SSSR, 117, 651, 1957.

    Google Scholar 

  4. R. S. Silver, Phil Mag., 23, 156, 633, 1937.

    Google Scholar 

  5. S. Patterson, Phil. Mag., 28, 186, 1, 1939; 30, 203, 437, 1940.

    Google Scholar 

  6. J. U. Muller, J. W. Fenn, and M. R. Irby. III Symposium on Combustion, 231, 1949.

  7. A. I. Rozlovskii, I. S. Roizen, and P. G. Sushchev, Izv. VUZ. Khimiya i khimicheskaya tekhnologiya, 2, 962, 1959.

    Google Scholar 

  8. Rules for the Manufacture of Explosion proof Electrical Equipment [in Russian], Gosenergoizdat, 1963.

  9. A. I. Rozlovskii Vest. tekhn. i ekonom. informatsiya, 9, 33, 1962.

    Google Scholar 

  10. H. F. Coward and P. G. Guest, J. Amer. Chem. Soc., 49, 2479, 1927.

    Google Scholar 

  11. P. F. Kovalev, Explosion proof Electrical Equipment for Mines, Candidates dissertation, Makeevka, 1953.

  12. L. E. Ashmen and A. Büchler. Combustion and Flame 5, 113, 1961.

    Google Scholar 

  13. A. G. Gaydon and H. G. Wolfhard, Flame, Its Structure, Radiation and Temperature [Russian translation], Metallurgizdat, 1959.

  14. E. A. Gel'fand, Tr. NIITB v neftyanoi promyshlennosti, no. 7, 58, 1954.

    Google Scholar 

  15. V. N. Zaichenko and E. A. Gel'fand, Tr. NIITB v neftyanoi promyshlennosti, no. 9, 64, 1956.

    Google Scholar 

  16. B. Kaesche-Kuscher and H. C. Wagner, Brennstoff-Chemie, 39, 33, 1958.

    Google Scholar 

  17. V. Ya. Shtern, Oxidation Mechanism of Hydrocarbons in the Gas Phase [in Russian], Izd-vo AN SSSR, 1960.

  18. K. Spence and D. T. A. Townend. Nature, 155, 330, 1945.

    Google Scholar 

  19. A. I. Rozlovskii and Yu. M. Ribas, Method of Determining Permissible Safe Heating Temperatures of Explosion proof Electrical Equipment and Device for Its Realization, Author's Certificate no. 158433, 5 April 1962.

  20. P. A. Ragozin, Handbook of Aviation and Motor Fuels [in Russian], Gostoptekhizdat, 1947.

  21. A. I. Rozlovskii, Zh. VKhO im. D. I. Mendeleeva, 7, 651, 1962.

    Google Scholar 

  22. V. G. Voronkov and N. N. Semenov, Zh. Fiz. khim., 13, 1695, 1939.

    Google Scholar 

  23. A. L. Myerson and F. R. Taylor, J. Amer. Chem. Soc., 75, 4348, 1953.

    Google Scholar 

  24. A. G. White, J. Chem. Soc., 498, 1927.

  25. M. S. Hsieh and D. R. A. Townend, J. Chem. Soc., 332, 337, 341, 1939.

    Google Scholar 

  26. J. E. C. Topps and D. T. A. Townend, Trans. Farad. Soc, 42, 345 1946.

    Google Scholar 

  27. H. F. Coward and G. W. Jones, Limits of Flammability of Gases and Vapors, U. S. Bureau of Mines, Bull., 503, 1952.

  28. N. P. Drozdov and Ya. B. Zel'dovich, Zh. fiz. khim., 17, 134, 1943.

    Google Scholar 

  29. H. G. Wolfhard, Jet Propulsion, 28, 798, 1958.

    Google Scholar 

  30. H. G. Wolfhard and M. Vanpee, VII Symposium on Combustion, 446, 1959.

Download references

Authors

Additional information

Fizika Goreniya i Vzryva, Vol. 1, No. 4, pp. 10–19, 1965

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ponizko, T.A., Rozlovskii, A.I. Hot-body ignition limits for air-fuel mixtures. Combust Explos Shock Waves 1, 5–11 (1965). https://doi.org/10.1007/BF00748804

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00748804

Keywords

Navigation