Skip to main content
Log in

Phosphate enrichment in the sandy loam soils of West-Flanders, Belgium

  • Published:
Fertilizer research Aims and scope Submit manuscript

Abstract

The last three decades, pig breeding has evolved towards a specialised, large scaled, land independent bio-industry in the province of West-Flanders. Subsequently, in certain regions, very high amounts of liquid pig manure are produced each year. This pig slurry is used as a fertilizer at a rate which very often exceeds normal agricultural practices. Because of the nonequilibrium between the phosphorus crop requirements and the P-inputs, phosphates accumulate in the soil. However, the phosphate sorption capacity of a soil is limited. Once the sorption capacity is exceeded, phosphates will start leaching through the soil profile. Since, during winter, in these areas, the groundwater table is situated at a depth of less than 1.0 m, phosphate breakthrough might take place. In the sandy loam soil region (± 1000 km2) of the province, an inventory of the P status of the soil was made. The region was sampled according to a regular grid with 2 km intervals. At random, some sample points were only 500 m apart. This resulted in a total of 296 samplings. In view of fertilizer recommendations, lactate extractable P of the plough layer (0-30 cm) was determined. A maximum value of 101 mg P 100 g−1 of air dry soil, a minimum value of 6 mg P 100 g−1 and a median value of 31 mg P 100 g−1 were found, indicating that for half of the spots monitored, the P status of the soil is high to very high. An oxalate extraction was done to investigate the phosphate saturation of the soil profile (0-90 cm). Based on a critical phosphate saturation degree of 30%, more than half of the soil profiles are phosphate saturated. Phosphate leaching at a rate higher than 0.1 mg ortho-P 1−1 at a depth of 90 cm can be expected. Therefore, a restriction of the P fertilization should be highly recommended. The geostatistical processing of the data using block kriging resulted in a spatial continuous estimate of the phosphate saturation degree. A good agreement was found between the pig density and the phosphate saturation degree of the soil profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barrow NJ (1983) A mechanistic model for describing the sorption and desorption of phosphate by soil. J Soil Sci 34: 733–750

    Google Scholar 

  • Beek J and van Riemsdijk WH (1982) Interactions of orthophosphate ions with soil. In: Bolt GH (ed) Soil Chemistry B, Physico-Chemical Models. Elsevier, Amsterdam, pp. 259–284

    Google Scholar 

  • Burgess TM and Webster R (1980a) Optimal interpolation and isarithmic mapping of soil properties. I: The semi-variogram and punctual kriging. Journal of Soil Science 31: 315–331

    Google Scholar 

  • Burgess TM and Webster R (1980b) Optimal interpolation and isarithmic mapping of soil properties. II: Block kriging. Journal of Soil Science 31: 333–341

    Google Scholar 

  • De Smet J, Hartmann R and De Boodt M (1990) De fosfortoestand van de bodem en het grondwater binnen het arrondissement Tielt. Rijksuniversiteit Gent. Med Fac Landbouwwetenschappen 55: 17–23

    Google Scholar 

  • Egner H, Riehm H and Domingo WR (1960) Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beürteilung des Nährstoffzustandes der Böden. II. Chemische Extraktionsmethoden zur Phosphor- und Kaliumbestimmung. K. Lantbrukshögsk. Ann. 26: 199–346

    Google Scholar 

  • Enfield CG, Phan T, Walters DM and Ellis R Jr. (1981) Kinetic model for phosphate transport and transformation in calcareous soils. I: Kinetics of transformation. Soil Sci Soc Am J 45: 1059–1064.

    Google Scholar 

  • Hendrickx G, Boon W, Bries J, Kempeneers L, Vandendriessche H, Deckers S and Geypens M (1992) De chemische bodemvruchtbarrheid van het Vlaamse akkerbouw- en weilandareaal 1989–1991. Bodemkundige Dienst van België, Heverlee

    Google Scholar 

  • Scheel KC (1936) Colorimetric determination of phosphoric acid in fertilizers with the Aulfrich photometer. Zeitschrift für Analytische Chemie 105: 256–259

    Google Scholar 

  • Schwertmann U (1964) Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung. Z. Pflanzenernährung, Düngung und Bodenkunde 105: 194–202

    Google Scholar 

  • Systat (1990) Systat: The system for statistics. Evanston, IL: SYSTAT, Inc.

    Google Scholar 

  • Van der Zee SEATM and van Riemsdijk WH (1986) Sorption kinetics and transport of phosphate in sandy soil. Geoderma 38: 293–309

    Google Scholar 

  • Van der Zee SEATM, van Riemsdijk WH and de Haan FAM (1990a) Het protokol fosfaatverzadigde gronden. Deel I: Toelichting. Landbouwuniversiteit Wageningen, Vakgroep Bodemkunde en Plantevoeding

  • Van der Zee SEATM, van Riemsdijk WH and de Haan FAM (1990b) Het protokol fosfaatverzadigde gronden. Deel II: Technische uitwerking. Landbouwuniversiteit Wageningen, Vakgroep Bodemkunde en Plantevoeding

  • VLM (1993) Mestactieplan, Brussels

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Smet, J., Hofman, G., Vanderdeelen, J. et al. Phosphate enrichment in the sandy loam soils of West-Flanders, Belgium. Fertilizer Research 43, 209–215 (1995). https://doi.org/10.1007/BF00747704

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00747704

Key words

Navigation