Skip to main content
Log in

Structure of x-ray photoelectron 2p and 1s spectra and x-ray Kα emission line of copper in YBa2Cu3O7−δ and CuO, on the basis of SCF-Xα-SW calculations

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Conclusions

Through an analysis of the electronic structure of the ground state and 2p and 1s hole states of the CuO4 6− cluster, modeling the immediate environment of a copper atom (one of the two types) in YBa2Cu3O7−δ and the immediate environment of the copper atom in CuO, it has been shown that upon ionization of core levels of copper, there is a radical reconstruction of the valence band of the cluster with a change in character of the chemical bond from covalent to ionic. Along with this, charge is transferred from the copper-oxygen bond to the central atom. Ionization of core levels leads to intense excitation of electrons into the upper semifilled valence level of the cluster 3b1g, and also leads to the appearance in the x-ray photoelectron and x-ray spectra (Kα spectra, for example) of intense satellite lines with strong multiplet splitting (with the exception of the satellite of the x-ray photoelectron 1s spectrum). We have confirmed the interpretation of the x-ray photoelectron 2p3/2 (2p1/2) spectrum and have predicted the form of the x-ray photoelectron 1s spectrum of copper(II). On the basis of the same approach, a complex structure has been predicted for the x-ray Kα emission line and it has been confirmed that the shift of this line in compounds of copper(II) must be made with some caution, as the shift may be due (for example) to a change in relative intensities of the main and satellite lines, which are located relative to each other at a distance of ≃0.4 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. S. Larsson, Chem. Phys. Lett.,32, 401–406 (1974).

    Google Scholar 

  2. S. Larsson, Chem. Phys. Lett.,40, 362–366 (1976).

    Google Scholar 

  3. S. Larsson, Phys. Scripta,21, 558–560 (1980).

    Google Scholar 

  4. S. Larsson and M. Braga, Chem. Phys. Lett.,48, 596–600 (1977).

    Google Scholar 

  5. G. Van der Laan, C. Westra, C. Haas, and G. A. Sawatzky, Phys. Rev. B,23, 4369–4380 (1981).

    Google Scholar 

  6. J. Ghijsen, L. N. Tjeng, J. van Elp, et al., Phys. Rev. B,38, 11322–11330 (1988).

    Google Scholar 

  7. M. S. Osadchii, V. V. Murakhtanov, É. S. Fomin, and L. N. Mazalov, Zh. Éksp. Teor. Fiz.,101, No. 4, 1259–1269 (1992).

    Google Scholar 

  8. R. Eschrig and G. Seifert, Solid State Commun.,64, No. 4, 521–525 (1987).

    Google Scholar 

  9. S. Asbrink and L.-J. Norrby, Acta. Crystallogr., Sect. B,26, 8–15 (1970).

    Google Scholar 

  10. J. Norman, J. Chem. Phys.,61, No. 11, 4630–4635 (1974).

    Google Scholar 

  11. E. A. Kmetko, Phys. Rev. A,1, No. 1, 37–38 (1970).

    Google Scholar 

  12. É. S. Fomin, “Optimal determination of mixing parameter in self-consistent calculations using potential mixing in various iterations”, Preprint, Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk (1989), Preprint 89–7.

    Google Scholar 

  13. J. C. Slater, in: Computational Methods in Band Theory, P. M. Marcus, J. F. Janak, and A. R. Williams (eds.), Plenum Press, New York (1971), pp. 447–457.

    Google Scholar 

  14. D. L. Novikov, M. V. Ryzhkov, and V. A. Gubanov, Zh. Strukt. Khim.,30, No. 5, 12–20 (1989).

    Google Scholar 

  15. D. L. Novikov, A. L. Ivanovskii, and V. A. Gubanov, Fiz. Met. Metalloved.,64, 195–198 (1987).

    Google Scholar 

  16. M. V. Ryzhkov, D. L. Novikov, and V. A. Gubanov, Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim., Nauk, No. 5, 46–51 (1988).

    Google Scholar 

  17. K. N. Johnson, M. E. McHenry, C. Counterman, et al., in: International Workshop on Novel Mechanisms of Superconductivity, Berkeley (1987), pp. 267–280.

  18. L. F. Mattheiss and D. R. Hamman, Solid State Commun.,63, No. 5, 395–399 (1987).

    Google Scholar 

  19. S. Massidda, J. Yu, A. J. Freeman, and D. D. Koelling, Phys. Lett. A.,122, No. 3/4, 198–202 (1987).

    Google Scholar 

  20. J. Yu., S. Massidda, A. F. Freeman, and D. D. Koelling, Phys. Lett. A.,122, No. 3/4, 203–208 (1987).

    Google Scholar 

  21. A. P. Kovtun, “Development of scattered wave method and its application in the investigation of electronic properties of compounds of the palladium sulfide type,” Authoris Abstract of Candidate's Dissertation, Kiev (1980).

  22. R. V. Vedrinskii, S. A. Prosandeev, I. I. Geguzin, and Yu. A. Teterin, Koord. Khim.,6, No. 9, 1372–1380 (1980).

    Google Scholar 

  23. S. Thomas, P. M. A. Sherwood, N. Singh, et al., Phys. Rev. B,39, No. 10, 6640–6651 (1989).

    Google Scholar 

  24. P. M. A. Sherwood, J. Chem. Soc., Faraday Trans. 2,72, 1791 (1976).

    Google Scholar 

Download references

Authors

Additional information

Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences. Translated from Zhurnal Strukturnoi Khimii, Vol. 33, No. 4, pp. 14–22, July–August, 1992.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fomin, É.S., Murakhtanov, V.V., Osadchii, M.S. et al. Structure of x-ray photoelectron 2p and 1s spectra and x-ray Kα emission line of copper in YBa2Cu3O7−δ and CuO, on the basis of SCF-Xα-SW calculations. J Struct Chem 33, 491–498 (1993). https://doi.org/10.1007/BF00746923

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00746923

Keywords

Navigation