Journal of Structural Chemistry

, Volume 17, Issue 6, pp 930–944 | Cite as

The characteristic crystal-chemical features of the structure of molecular charge-transfer complexes

  • J. J. Bleidelis
  • A. E. Shvets
  • J. F. Freimanis


On the basis of the foregoing, we can reach the following conclusions.
  1. 1.

    In molecular AC with charge transfer, as in binary CTC, with the exception of AC with a 4-membered bridge, intermolecular plane-parallel (or almost plane-parallel) pairing of the planes of the donor and acceptor molecular fragments takes place, leading to intermolecular π~π* charge transfer.

  2. 2.

    The type of orientation of the resulting donor-acceptor pairs in the case of the AC crystal depends to a significant extent on the length of the isolating bridge. It is possible to observe either isolated DA pairs or DA subunits which are “cross-linked” by intramolecular nonvalence interaction, or the formation of mixed stacks of planes, similar to those of binary CTC. In AC crystals these stacks may be oriented in one or two directions.

  3. 3.

    At the same time, organization of the subunits of the binary CTC in columns is almost always observed.

  4. 4.

    An appreciable change in the donor or acceptor parts with preservation of the length of the isolating bridge in the molecules alters their configuration as a whole, the packing motif in the crystal, and hence the nature of the donor-acceptor interactions of the molecules.

  5. 5.

    In AC molecules, in addition to the intermolecular π~π* charge transfer characteristic of all CTC. it is possible in a number of cases to observe crystallographic features leading to intramolecular n~π* interaction, that is, to observe “double complex formation.” Both types of DA interaction have been proved by spectroscopy.

  6. 6.

    For all CTC, the presence of bulky substituents on the donor or acceptor fragments leads to loosening of the DA pairs or even to the disappearance of the stacks.

  7. 7.

    Increase in the length of the isolating bridge in AC leads to a decrease in the probability of intermolecular overlap. At the same time there may be an increase in the tendency of the DA fragments to show intramolecular “saturation.”



Charge Transfer Molecular Fragment Bulky Substituent Crystallographic Feature Double Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    G. M. Bennet and G. H. Willis, J. Chem. Soc., 256 (1929).Google Scholar
  2. 2.
    R. S. Mulliken, J. Phys. Chem.,56, 801 (1952).Google Scholar
  3. 3.
    G. Briegleb, Angew. Chem., Int. Ed., 617 (1964).Google Scholar
  4. 4.
    S. Saha, A. Sekhar-Ghosh, and S. Basu, J. Chim. Phys. Physicochim. Biol.,65(4), 673 (1968).Google Scholar
  5. 5.
    S. G. Ardhendu and S. Satyabrata, Indian J. Chem.,11, (3), 260 (1973).Google Scholar
  6. 6.
    H. A. Benesi and J. H. Hildebrand, J. Am. Chem. Soc.70, 2382 (1948).Google Scholar
  7. 7.
    H. A. Benesi and R. M. Hildebrand, J. Am. Chem. Soc.,71, 2703 (1949).Google Scholar
  8. 8.
    L. J. Andrews and R. M. Keefer, in: Advances in Inorganic Chemistry and Radiochemistry (ed. by H. J. Emeléus and A. G. Sharpe), Vol. 3, Academic Press, New York (1961).Google Scholar
  9. 9.
    R. E. Merrifield and W. D. Phillips, J. Am. Chem. Soc.,80, 2778 (1958).Google Scholar
  10. 10.
    R. S. Mulliken and W. B. Person, Molecular Complexes, Wiley-Interscience, New York (1969).Google Scholar
  11. 11.
    P. Pfeiffer, Organische Molekulverbindungen (2nd edition), Ferdinand Enke, Stuttgart (1927).Google Scholar
  12. 12.
    G. Briegleb, Zwischenmolekulare Kräfte, G. Braun, Karlsruhe (1949).Google Scholar
  13. 13.
    J. Weiss, J. Chem. Soc., 462 (1943).Google Scholar
  14. 14.
    M. J. S. Dewar, The Electronic Theory of Organic Chemistry, Oxford University Press, London (1949).Google Scholar
  15. 15.
    R. S. Mulliken, J. Am. Chem. Soc.,74, 811 (1952).Google Scholar
  16. 16.
    R. S. Mulliken and W. B. Person, J. Am. Chem. Soc.,91, 3409 (1969).Google Scholar
  17. 17.
    M. W. Hanna and D. E. Williams, J. Am. Chem. Soc.,90, 5358 (1968).Google Scholar
  18. 18.
    H. M. McConnel, B. M. Hoffman, and R. M. Metzger, Proc. Nat. Acad. Sci. USA,53, 46 (1965).Google Scholar
  19. 19.
    H. M. Powell, G. Huse, and P. W. Cooke, J. Chem. Soc., 153 (1943).Google Scholar
  20. 20.
    H. M. Powell and G. Huse, J. Chem. Soc., 435 (1943).Google Scholar
  21. 21.
    S. S. Chu, G. A. Jeffrey, and T. Sakurai, Acta Crystallogr.,15, 661 (1962).Google Scholar
  22. 22.
    S. C. Wallwork and T. T. Harding, Acta Crystallogr.,15, 810 (1962).Google Scholar
  23. 23.
    C. K. Prout and A. G. Wheeler, J. Chem. Soc., (A), 469 (1967).Google Scholar
  24. 24.
    K. Yakushi, I. Ikemoto, and H. Kuroda, Acta Crystallogr.,B27, 1710 (1971).Google Scholar
  25. 25.
    C. K. Prout and I. J. Tikle, J. Chem. Soc., Perkin Trans. II,9, 1212 (1973).Google Scholar
  26. 26.
    S. C. Wallwork, J. Chem. Soc., 494 (1961).Google Scholar
  27. 27.
    J. L. de Boer and A. Vos, Acta Crystallogr.,B24, 720 (1968).Google Scholar
  28. 28.
    B. Mayoh and C. K. Prout, J. Chem. Soc., Faraday Trans. II,6, 1072 (1972).Google Scholar
  29. 29.
    R. M. Williams and S. C. Wallwork, Acta Crystallogr.,22, 899 (1967).Google Scholar
  30. 30.
    S. Kumakura, F. Iwasaki, and Y. Saito, Bull. Chem. Soc. Jpn.,40, 1826 (1967).Google Scholar
  31. 31.
    R. S. Mulliken, Rec. Trav. Chim.,75, 845 (1956).Google Scholar
  32. 32.
    A. N. Aleksandrov, A. Karutts, I. V. Krivoshei, G. B. Litinskii, V. E. Starov, V. É. Umanskii, and Fan Lyong, Preprint of the FTINT, Academy of Sciences of the Ukrainian SSR, Khar'kov (1975).Google Scholar
  33. 33.
    A. W. Hanson, Acta Crystallogr.,19, 19 (1965).Google Scholar
  34. 34.
    A. W. Hanson, Acta Crystallogr.,17, 559 (1964).Google Scholar
  35. 35.
    L. J. Andrews and R. M. Keefer, Molecular Complexes in Organic Chemistry, Holden-Day, San Francisco (1964) [Russian translation; Mir, Moscow (1967)].Google Scholar
  36. 36.
    I. Ikemoto and H. Kuroda, Bull. Chem. Soc. Jpn.,40, 2009 (1967).Google Scholar
  37. 37.
    D. S. Brown, S. C. Wallwork, and A. Wilson, Acta Crystallogr.,17, 168 (1964).Google Scholar
  38. 38.
    R. M. Williams and S. C. Wallwork, Acta Crystallogr.,21, 406 (1966).Google Scholar
  39. 39.
    F. Iwasaki and Y. Saito, Acta Crystallogr.,B26, 251 (1970).Google Scholar
  40. 40.
    C. S. Choi and J. Abel, Acta Crystallogr.,B28, 193 (1972).Google Scholar
  41. 41.
    J. Trotter, Tetrahedron,8, 13 (1960).Google Scholar
  42. 42.
    Y. Ohashi, H. Iwasaki, and Y. Saito, Bull. Chem. Soc. Jpn.40, 1789 (1967).Google Scholar
  43. 43.
    N. Niimura, Y. Ohashi, and Y. Saito, Bull. Chem. Soc., Jpn.,41, 1815 (1968).Google Scholar
  44. 44.
    H. Tsuchiya, F. Marumo, and Y. Saito, Acta Crystallogr.,B28, 1935 (1972).Google Scholar
  45. 45.
    H. Tsuchiya, F. Marumo, and Y. Saito, Acta Crystallogr.,B29, 659 (1973).Google Scholar
  46. 46.
    S. Iwata, J. Tanaka and S. Nagakura J. Am. Chem. Soc.,89, 2813 (1967).Google Scholar
  47. 47.
    S. Iwata, J. Tanaka, and S. Nagakura, J. Am. Chem. Soc.,88, 894 (1966).Google Scholar
  48. 48.
    H. Kuroda, T. Amano, I. Ikemoto, and H. Akamatu, J. Am. Chem. Soc.,89, 6056 (1967).Google Scholar
  49. 49.
    H. Kuroda, I. Ikemoto, and H. Akamatu, Bull. Chem. Soc. Jpn.,39, 547 (1966).Google Scholar
  50. 50.
    U. Schmueli and I. Goldberg, Acta Crystallogr.,B30, 573 (1974).Google Scholar
  51. 51.
    E. Adman, M. Rosenblum, S. Sullivan, and T. Margulis, J. Am. Chem. Soc.,89, 4540 (1967).Google Scholar
  52. 52.
    J. Bernstein and K. Trueblood, Acta Crystallogr.,B27, 2078 (1971).Google Scholar
  53. 53.
    I. Goldberg and U. Schmueli, Acta Crystallogr.,B29, 432 (1973).Google Scholar
  54. 54.
    R. E. Long, R. A. Sparks, and K. N. Trueblood, Acta Crystallogr.,18, 932 (1965).Google Scholar
  55. 55.
    H. T. Joukman and J. K. Kommandeur, Chem. Phys. Lett.,15, 496 (1972).Google Scholar
  56. 56.
    I. Goldberg and U. Schmueli, Acta Crystallogr.,B29, 440 (1973).Google Scholar
  57. 57.
    R. M. Williams and S. C. Wallwork, Acta Crystallogr.,B24, 168 (1968).Google Scholar
  58. 58.
    I. Goldberg and U. Schmueli, Acta Crystallogr.,B29, 421 (1973).Google Scholar
  59. 59.
    T. T. Harding and S. C. Wallwork, Acta Crystallogr.,6, 791 (1953).Google Scholar
  60. 60.
    H. Matsuda, K. Osaki, and I. Natta, Bull. Chem. Soc. Jpn.,31, 611 (1958).Google Scholar
  61. 61.
    T. Sakurai, Acta Crystallogr.,19, 320 (1965).Google Scholar
  62. 62.
    T. Ito, M. Mikobe, and T. Sakurai, Acta Crystallogr.,B26, 1145 (1970).Google Scholar
  63. 63.
    T. Sakurai and H. Tagawa, Acta Crystallogr.B27, 1453 (1971).Google Scholar
  64. 64.
    G. G. Shipley and S. C. Wallwork, Acta Crystallogr.,22, 585 (1967).Google Scholar
  65. 65.
    G. G. Shipley and S. C. Wallwork, Acta Crystallogr.,22, 593 (1967).Google Scholar
  66. 66.
    N. D. Sokolov, Ann. Chim.10, 497 (1965).Google Scholar
  67. 67.
    J. Gaultier, C. Hauw, and M. Schvoerer, Acta Crystallogr.,B27, 2199 (1971).Google Scholar
  68. 68.
    B. Rees, Acta Crystallogr.,B26, 1304 (1970).Google Scholar
  69. 69.
    B. Rees, R. Haser, and R. Weiss, Bull. Soc. Chim. France,8, 2658 (1966).Google Scholar
  70. 70.
    J. Gaultier and C. Hauw, Acta Crystallogr.,18, 604 (1965).Google Scholar
  71. 71.
    H. Breton-Lacombe, Acta Crystallogr.,6, 1031 (1967).Google Scholar
  72. 72.
    J. C. Metras, Acta Crystallogr.,14, 153 (1961).Google Scholar
  73. 73.
    O. Hassel and C. Romming, Quart. Rev. (London),16, 1 (1962).Google Scholar
  74. 74.
    V. A. Izmail'skii and V. E. Limanov, Zh. Obshch. Khim.,29, 2927 (1959).Google Scholar
  75. 75.
    L. E. Berzin, D. J. Murniece, J. J. Dregeris, and J. F. Freimanis, Izv. Akad. Nauk Latv. SSR, Ser. Khim., 460 (1971).Google Scholar
  76. 76.
    C. K. Prout and E. E. Castellano, J. Chem. Soc., A, 2775 (1970).Google Scholar
  77. 77.
    M. Meyers and K. N. Trueblood, Acta Crystallogr.B25, 2588 (1969).Google Scholar
  78. 78.
    J. R. Herriot, A. Camerman, and D. A. Deranleau, J. Am. Chem. Soc.,96, 1585 (1974).Google Scholar
  79. 79.
    J. Karle, I. L. Karle, and D. Mitchell, Acta Crystallogr.,B25, 866 (1969).Google Scholar
  80. 80.
    J. F. Freimanis, J. J. Dregeris, et al., Zh. Obshch. Khim.,42, 603 (1972).Google Scholar
  81. 81.
    A. E. Shvets, J. J. Bleidelis, and J. F. Freimanis, Zh. Strukt. Khim.,15, 504 (1974).Google Scholar
  82. 82.
    A. E. Milliaresi and V. A. Izmail'skii, Zh. Obshch. Khim.,35, 776 (1965).Google Scholar
  83. 83.
    A. E. Shvets, J. J. Bleidelis, and J. F. Freimanis, Zh. Strukt. Khim.,16, 98 (1975).Google Scholar
  84. 84.
    J. Freimanis, J. Dregeris, et al., Adv. Mol. Relax. Proc.,5, 33 (1973).Google Scholar
  85. 85.
    J. F. Freimanis, J. J. Dregeris, et al., Summaries of Papers Presented at the Second All-Union Conference on Charge-Transfer Complexes and Radical-Ion Salts, Riga, 1973 [in Russian], p. 45.Google Scholar
  86. 86.
    A. E. Shvets, J. J. Bleidelis, and J. F. Freimanis, Zh. Strukt. Khim.,16, 415 (1975).Google Scholar
  87. 87.
    J. F. Freimanis and L. E. Berzin, Dokl. Akad. Nauk SSSR,185, 139 (1969).Google Scholar
  88. 88.
    J. F. Freimanis, A. J. Malmanis, and J. J. Dregeris, Bull. Chem. Soc. Jpn. (in press).Google Scholar
  89. 89.
    A. E. Shvets, J. J. Bleidelis, and J. F. Freimanis, Zh. Strukt. Khim.,16, 640 (1975).Google Scholar
  90. 90.
    V. G. Rumyantsev, L. M. Blinov, J. F. Freimanis, and J. J. Dregeris, Zh. Strukt. Khim.,16, 222 (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • J. J. Bleidelis
  • A. E. Shvets
  • J. F. Freimanis

There are no affiliations available

Personalised recommendations