Journal of Materials Science

, Volume 18, Issue 3, pp 930–942 | Cite as

The metallography and deformation of the aligned Cd-Zn eutectic

Part 1 Compression
  • C. J. Davidson
  • I. O. Smith


The influence of interlamellar spacing (λ) and heat-treatment on the compressive deformation of unidirectionally solidified Cd-Zn eutectic alloys has been investigated by precision strain measurements during compressive loading and by optical and transmission electron metallography. The flow stress at a measured plastic strain of 1×10−6 increased markedly with decreasingλ. The strain hardening rate was linear between plastic strains of 10−5 and about 5×10−3 and was independent ofλ. Basal glide was found to be the predominant deformation process during the linear strain hardening and it led to kink band formation at plastics strains of approximately 6×10−3. Probable causes of the dependence of deformation mechanics onλ are examined.


Plastic Strain Strain Hardening Flow Stress Deformation Process Compressive Loading 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. J. Shaw,Acta Met. 15 (1967) 1169.Google Scholar
  2. 2.
    M. Sahoo, R. A. Porter andR. W. Smith,J. Mater. Sci. 11 (1976) 1680.Google Scholar
  3. 3.
    G. W. Delamore, R. H. Van De Merwe, M. Sahoo andR. W. Smith,ibid. 16 (1981) 2313.Google Scholar
  4. 4.
    J. D. Meakin,Can. J. Phys. 45 (1967) 1121.Google Scholar
  5. 5.
    C. J. Davidson andI. O. Smith,J. Mater. Sci. 18 (1983).Google Scholar
  6. 6.
    M. Booth, M. Gittos andP. Wilkes,Met. Trans. 5 (1974) 775.Google Scholar
  7. 7.
    M. Straumanis andN. Brakss,Z. Phys. Chem. 30B (1935) 117.Google Scholar
  8. 8.
    B. Soutiere andH. W. Kerr,Trans. TMS-AIME 245 (1969) 2595.Google Scholar
  9. 9.
    E. Orowan,Nature 149 (1942) 643.Google Scholar
  10. 10.
    J. B. Hess andC. S. Barrett,Trans. TMS-AIME 185 (1949) 599.Google Scholar
  11. 11.
    F. Laszlo,J. Iron St. Inst. 147 (1943) 173.Google Scholar
  12. 12.
    R. F. S. Hearmon, Landolt-Börnstein New Series, Vols. 1 and 2 (Springer-Verlag, Berlin, 1966, 1969).Google Scholar
  13. 13.
    Y. S. Touloukian, R. K. Kirby, R. E. Taylor andP. D. Desai, “Thermophysical Properties of Matter” (Plenum Press, New York, 1975).Google Scholar
  14. 14.
    R. W. K. Honeycombe, “The Plastic Deformation of Metals” (Arnold, London, 1968) pp. 21–23.Google Scholar
  15. 15.
    C. J. Davidson, PhD thesis, University of Queensland (1980).Google Scholar
  16. 16.
    P. B. Price,Phil. Mag. 5 (1960) 873.Google Scholar
  17. 17.
    J. J. Jonas, C. M. Sellars andW. J. Mcg. Tegart,Met. Rev. 14 (1969) 1.Google Scholar
  18. 18.
    Y. G. Nakagawa andG. C. Weatherly,Met. Trans. 3 (1972) 3223.Google Scholar

Copyright information

© Chapman and Hall Ltd 1983

Authors and Affiliations

  • C. J. Davidson
    • 1
  • I. O. Smith
    • 1
  1. 1.Department of Mining and Metallurgical EngineeringUniversity of QueenslandQld.Australia

Personalised recommendations