Journal of Materials Science

, Volume 18, Issue 3, pp 919–929 | Cite as

Internal oxidation in gold alloys containing small amounts of Fe and Sn

  • Hiroki Ohno
  • Yasuo Kanzawa
Papers

Abstract

Internal oxidation was observed in gold-rich alloys as substrates for porcelain veneers in dental restorations, which contain small amounts of Fe and Sn. The internal oxidation proceeded with oxygen ions diffusing to the inner part of the alloy through Fe2O3 formed at the grain boundaries of the alloy matrix. SnO2 was formed internally together with the Fe2O3. The external oxidation zone was composed of only Fe2O3 in a wide range of Fe and Sn concentrations. Fe3O4 was formed with Fe2O3 in the Sn-rich composition range by reduction of Fe2O3 in the presence of Sn. A band mainly composed of SnO2 was formed at the inside of the internal oxidation zone in the composition range where Fe3O4 formed. In the Sn-rich alloys this internal oxidation band of SnO2 moved to the external oxidation zone.

Keywords

Oxidation Oxygen Polymer Gold Fe2O3 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. N. Rhines,Trans. AIME 137 (1940) 246.Google Scholar
  2. 2.
    F. N. Rhines, W. A. Johnson andW. A. Anderson,ibid. 147 (1942) 205.Google Scholar
  3. 3.
    L. S. Darken,ibid,150 (1942) 157.Google Scholar
  4. 4.
    J. L. Meijering andM. J. Druyvesteyn,Philips Res. Rept. 2 (1947) 81, 260.Google Scholar
  5. 5.
    C. Wagner,Z. Elektrochem. 63 (1959) 773.Google Scholar
  6. 6.
    Idem, J. Colloid. Sci. 5 (1950) 85.Google Scholar
  7. 7.
    R. A. Rapp,Acta Metall. 9 (1961) 730.Google Scholar
  8. 8.
    J. W. Armitage andR. A. Rapp,Sci. Am. Rev. 5 (1963) 67.Google Scholar
  9. 9.
    R. A. Rapp, D. F. Frank andJ. V. Armitage,Acta Metall. 12 (1964) 505.Google Scholar
  10. 10.
    G. Böhm andM. Kahlweit,ibid. 12 (1964) 641.Google Scholar
  11. 11.
    J. L. Meijering,Adv. Met. Res. 5 (1971) 1.Google Scholar
  12. 12.
    R. L. Klueh andW. W. Mullins,Acta Metall. 17 (1969) 69.Google Scholar
  13. 13.
    S. W. Kennedy, L. D. Calvert andN. Cohen,Trans. AIME 215 (1959) 64.Google Scholar
  14. 14.
    T. Igarashi, M. Shibata andY. Kodama,J. Japan Inst. Metals 44 (1980) 378.Google Scholar
  15. 15.
    O. Kubashewski andC, B. Alcock,“Metallurgical Thermochemistry” (Pergamon Press, New York, 1979) p. 378.Google Scholar
  16. 16.
    J. Paidassi,J. Metals 4 (1952) 536.Google Scholar
  17. 17.
    K. Hauffe, “Oxidation of Metals” (Plenum Press, New York, 1965) p. 285.Google Scholar
  18. 18.
    P. Kofstad, “High-Temperature Oxidation of Metals” (John Wiley, New York 1966) p. 108.Google Scholar
  19. 19.
    J. Cassedanne,Ann. Acad. Brasil. Cienc. 38 (1966) 266.Google Scholar
  20. 20.
    S. Goto andS. Koda,J. Japan Inst. Metals 34 (1970) 319.Google Scholar
  21. 21.
    J. L. Meijering,Z. Electrochem. 63 (1959) 824.Google Scholar
  22. 22.
    S. M. Klotsman, A. N. Timofeyev andI. Sh. Traktenverg,Phys. Met. Metallogr. 10 (1960) 93.Google Scholar
  23. 23.
    “Diffusion Data”,2, 1 (1967–68) p. 48.Google Scholar
  24. 24.
    R. Lindner,Arkiv Kemi 4 (1952) 381.Google Scholar
  25. 25.
    W. C. Hagel,Trans. AIME 236 (1966) 179.Google Scholar

Copyright information

© Chapman and Hall Ltd 1983

Authors and Affiliations

  • Hiroki Ohno
    • 1
  • Yasuo Kanzawa
    • 1
  1. 1.Department of Dental Materials Science, School of DentistryHigashi-Nippon-Gakuen UniversityHokkaidoJapan

Personalised recommendations