Journal of Materials Science

, Volume 18, Issue 3, pp 732–740 | Cite as

Microstructural aspects of impact erosion in single crystals of LiF, NaCl, KCl and CaF2 by blunt projectiles

  • Susan R. Schuon
  • K. N. Subramanian


In an attempt to clarify the fundamental mechanism of material removal in erosion by blunt solid particles entrained in a fluid stream impinging on a solid surface, single crystals of CaF2 (relatively brittle), LiF (intermediate between brittle and ductile), and KCl and NaCl (relatively ductile) were eroded with 0.25 mm glass beads and 0.50 mm quartz sand grains. The velocity of the particles was varied between 2 and 120 m sec−1. Erosion damage was studied with optical and scanning electron microscopy. In the single-impact mode, the damage is highly dependent on the mechanical properties of the target; material spalled off or micromachined out in individual impacts, or as chips produced upon the intersection of fractures resulting from several neighbouring impacts. At normal impact, the predominant mechanism is intersecting fractures, but at impact angles away from the normal, micromachining occurs in NaCl and KCl and, in fact, becomes the major mechanism of material removal. In LiF, only a little micromachining occurs and in CaF2, none at all; hence in these materials spalling is the controlling mechanism for material loss in individual impacts.


Brittle Solid Particle CaF2 Material Removal Glass Bead 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Washburn, “Electron Microscopy and Strength of Crystals”, edited by Thomas and J. Washburn (Interscience, New York, 1963) p. 301.Google Scholar
  2. 2.
    J. J. Gilman andW. G. Johnson,J. Appl. Phys. 27 (1962) 1018.Google Scholar
  3. 3.
    Idem, Solid State Physics 13 (1962) 148.Google Scholar
  4. 4.
    J. J. Gilman,Acta Metall. 7 (1959) 608.Google Scholar
  5. 5.
    T. L. Johnston, C. H. Li andR. J. Stokes, “Strengthening Mechanisms in Solids” (ASM, Metals Park, Ohio, 1962) p. 341.Google Scholar
  6. 6.
    J. Washburn,ibid.“, p. 51.Google Scholar
  7. 7.
    W. L. Phillips, Jr,J. Amer. Ceram. Soc. 44 (1961) 499.Google Scholar
  8. 8.
    A. R. Patel andC. C. Desai,Z. Kristallogr. 121 (1965) 55.Google Scholar
  9. 9.
    T. McGuiness andA. Thiruvengadam, ASTM Spec. Tech. Publ. no. 567 (1974) p. 30.Google Scholar
  10. 10.
    A. S. Springer andC. B. Bax,ibid. p. 106.Google Scholar
  11. 11.
    M. C. Rochester andJ. H. Branton,ibid., p. 128.Google Scholar
  12. 12.
    A. F. Conn andS. L. Rudy,ibid., p. 239.Google Scholar
  13. 13.
    D. E. Elliott, J. B. Marriott andA. Smith, ASTM Spec. Tech. Publ. no. 474 (1979) p. 127.Google Scholar
  14. 14.
    W. D. Pouchot,ibid., (1970) p. 383.Google Scholar
  15. 15.
    P. Eisenberg,ibid., p. 3.Google Scholar
  16. 16.
    F. Erdman-Jesnitzer andH. Lo, ASTM Spec. Tech. Publ. no. 568 (1974) p. 171.Google Scholar
  17. 17.
    B. Vyas andC. M. Preece,ibid. p. 77.Google Scholar
  18. 18.
    G. Hoff, G. Lanhein andH. Rieger, ASTM Spec. Tech. Publ. no. 474 (1970) p. 42.Google Scholar
  19. 19.
    B. J. Hockey, S. M. Wiederhorn andH. Johnston. NBSIR 77-1396 (1977).Google Scholar
  20. 20.
    I. Finnie,Wear 19 (1972) 81.Google Scholar
  21. 21.
    G. P. Tilly,ibid. 23 (1973) 87.Google Scholar
  22. 22.
    R. E. Winter andI. M. Hutchings,ibid. 25 (1977) 141.Google Scholar
  23. 23.
    G. L. Sheldon,J. Basic Eng. Trans. ASME 62D (1970) 619.Google Scholar
  24. 24.
    S. M. Weiderhorn andD. E. Roberts,Amer. Ceram. Soc. Bull. 55 (1976) 185.Google Scholar
  25. 25.
    H. Hertz,J. Reine Angew Math. 92 (1882) 156.Google Scholar
  26. 26.
    L. B. Greszezuk, ASTM Spec. Tech. Publ. no. 568 (1975) p. 183.Google Scholar
  27. 27.
    B. R. Lawn andT. R. Wilshaw,J. Mater. Sci. 10 (1975) 113.Google Scholar
  28. 28.
    I. Finnie,Wear 3 (1960) 87.Google Scholar
  29. 29.
    F. B. Langitan andB. R. Lawn,J. Appl. Phys. 40 (1969) 4009.Google Scholar
  30. 30.
    Idem, ibid.,42 (1973) 405.Google Scholar
  31. 31.
    A. G. Evans,J. Amer. Ceram. Soc. 56 (1973) 405.Google Scholar
  32. 32.
    B. R. Lawn,J. Appl. Phys. 39 (1968) 4828.Google Scholar
  33. 33.
    B. R. Lawn, S. M. Wiederhorn andH. H. Johnson,J. Amer. Ceram. Soc. 98 (1975) 428.Google Scholar
  34. 34.
    S. M. Wiederhorn andB. R. Lawn,ibid. 60 (1977) 451.Google Scholar
  35. 35.
    F. C. Frank andB. R. Lawn,Proc. Roy. Soc. London, Ser. A 299 (1967) 291.Google Scholar
  36. 36.
    W. F. Adler, ASTM Spec. Tech. Publ. no. 567 (1974) p. 294.Google Scholar
  37. 37.
    A. W. Ruff andL. K. Ives,Wear 35 (1975) 195.Google Scholar
  38. 38.
    R. W. Armstrong andC. Cm. Wu,J. Amer. Ceram. Soc. 61 (1978) 102.Google Scholar
  39. 39.
    A. S. Keh,J. Appl. Phys. 31 (1960) 1538.Google Scholar

Copyright information

© Chapman and Hall Ltd 1983

Authors and Affiliations

  • Susan R. Schuon
    • 1
  • K. N. Subramanian
    • 1
  1. 1.Department of Metallurgy, Mechanics and Materials ScienceMichigan State UniversityEast LansingUSA

Personalised recommendations