Journal of Materials Science

, Volume 18, Issue 3, pp 721–731 | Cite as

Viscoelastic characterization of poly(butylene terephthalate) using longitudinal resonances

  • R. K. Galkiewicz
  • F. E. Karasz


The viscoelastic constants of poly(butylene terephthalate) were determined as a function of temperature using the harmonic dispersion of longitudinal resonances. Measured quantities were Young's modulus, Poisson's ratio and the logarithmic decrement, from which the bulk and shear moduli were derived. It was found that a dispersion relation used by Schwarzl and Struik can be employed to compensate for frequency dispersion of the modulus using no adjustable parameters. Measured quantities agree well with previously published values. Appendices are included which derive the resonant frequency shift due to damping in our specific experiment and which estimate the error introduced by the Schwarzl-Struik dispersion relation.


Polymer Dispersion Relation Resonant Frequency Butylene Frequency Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. G. McCrum, B. E. Read andG. Williams, “Anelastic and Dielectric Effects in Polymeric Solids” (Wiley, London, 1967).Google Scholar
  2. 2.
    D. S. Muzzey, Jr,Phys. Rev. 36 (1930) 935.Google Scholar
  3. 3.
    V. E. Giebe andE. Blechschmidt,Ann. Phys. 5 (1933) 417,457.Google Scholar
  4. 4.
    R. K. Galkiewicz andF. E. Karasz,J. Appl. Phys. 49 (1978) 5233.Google Scholar
  5. 5.
    H. Kolsky, “Stress Waves in Solids” (Dover Publications, New York, 1963) p. 41.Google Scholar
  6. 6.
    L. Pochhammer,J. Reine Angew. Math. 81 (1876) 324.Google Scholar
  7. 7.
    C. Chree,Q. J. Math. 24 (1980) 340.Google Scholar
  8. 8.
    Lord Rayleigh, “The Theory of Sound”, Vol. I (Dover Publications, New York, 1945) p. 251.Google Scholar
  9. 9.
    M. Horio andS. Onogi,J. Appl. Phys. 22 (1951) 977.Google Scholar
  10. 10.
    F. R. Schwarzl andL. C. E. Struik,Adv. Mol. Relax. Proc. 1 (1967, 1968) 201.Google Scholar
  11. 11.
    G. Nemoz, J. F. May andG. Vallet,Rheol. Acta 13 (1974) 66.Google Scholar
  12. 12.
    G. Farrow, J. McIntosh andI. M. Ward,Makromol. Chem. 38 (1960) 147.Google Scholar
  13. 13.
    K. H. Illers andH. Breuer,J. Colloid Sci. 18 (1963) 1.Google Scholar
  14. 14.
    M. T. Takemori,Polymer Eng. Sci. 18 (1978) 1193.Google Scholar
  15. 15.
    R. W. Warfield andF. R. Barnet,Angew. Makromol. Chem. 44 (1975) 181.Google Scholar
  16. 16.
    J. B. Marion, “Classical Dynamics of Particles and Systems” (Academic Press, New York, 1965) p. 141.Google Scholar

Copyright information

© Chapman and Hall Ltd 1983

Authors and Affiliations

  • R. K. Galkiewicz
    • 1
  • F. E. Karasz
    • 1
  1. 1.Materials Research Laboratory, Department of Polymer Science and EngineeringUniversity of MassachusettsAmherstUSA

Personalised recommendations