Journal of Bioenergetics and Biomembranes

, Volume 9, Issue 1, pp 73–90 | Cite as

The reversibility of the ethidium bromide-induced alterations of mitochondrial structure and function in the cellular slime mold,Dictyostelium discoideum

  • Lawrence Kobilinsky
  • Diana S. Beattie
Research Articles

Abstract

Addition of ethidium bromide to ameboid cultures of the slime mold,Dictyostelium discoideum, caused a cessation of cell division after 1 or 2 generations. The replication of mitochondrial DNA was immediately blocked as indicated by the 50% decrease in the DNA content of purified mitochondria from ethidium-bromide-treated cultures. The activity of the respiratory chain was also inhibited, resulting in a 75% decrease in cyanide-sensitive whole cell respiration. Spectral analysis at low temperature indicated that the amount of cytochromec1 was decreased 80% and that of cytochromec increased 100% in mitochondria from treated cells. Two cytochromesb absorbing at 556 and 561 nm were observed in mitochondria from both control and ethidium-bromide-treated cultures. The content of cytochromeb561 appeared to decline more than didb556, but it is hard to quantitate the decrease. The effects of ethidium bromide were fully reversible. When the drug was removed, the cells resumed a normal growth rate without any discernible lag. The activity of oligomycin-sensitive ATPase, cytochrome oxidase, and succinate-cytochrome-c reductase as well as the cytochrome content began to increase after 1 day returning to control levels within 5 days. Electron micrographs of whole cells treated with ethidium bromide revealed that mitochondrial profiles were elongated and had greatly reduced cristae. Numerous membrane whorls were apparent, as was a profound loss of rough endoplasmic reticulum. Three days after removal of ethidium bromide, mitochondria were again ovoid in shape and contained well-developed cristae. In all of the cells during recovery, there was a single large vacuole that appeared to enclose a large portion of the cell volume, forming a new cellular compartment that may simplify the breakdown of previously damaged organelles.

Keywords

Ethidium Bromide Respiratory Chain Cytochrome Oxidase Rough Endoplasmic Reticulum Cellular Compartment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. J. Waring,Nature 219 (1968) 1320.Google Scholar
  2. 2.
    H. Fan and S. Penman,Science 168 (1970) 135.Google Scholar
  3. 3.
    E. S. Goldring, L. I. Grossman, O. Krupnick, D. R. Cryer, and J. Marmur,J. Mol. Biol. 52 (1970) 323.Google Scholar
  4. 4.
    P. P. Slonimski, G. Perrodin, and J. H. Croft,Biochem. Biophys. Res. Commun. 30 (1968) 232.Google Scholar
  5. 5.
    Y. Naum and D. A. Pious,Exp. Cell Res. 65 (1971) 335.Google Scholar
  6. 6.
    M. E. King, G. O. Godman, and D. W. King,J. Cell. Biol. 53 (1972) 127.Google Scholar
  7. 7.
    G. Soslau and M. M. K. Nass,J. Cell Biol. 51 (1971) 514.Google Scholar
  8. 8.
    N. Sato, B. Chance, K. Kato, and W. Klietmann,Fed. Eur. Biochem. Soc. Lett. 29 (1973) 222.Google Scholar
  9. 9.
    R. R. Meyer, C. R. Boyd, D. C. Rein, and S. J. Keller,Exp. Cell Res. 70 (1972) 233.Google Scholar
  10. 10.
    M. M. K. Nass and Y. Ben-Shaul,J. Cell Sci. 13 (1973) 567.Google Scholar
  11. 11.
    R. N. Stuchell, B. I. Weinstein, and D. S. Beattie,Fed. Eur. Biochem. Soc. Lett. 37 (1973) 23.Google Scholar
  12. 12.
    R. N. Stuchell, B. I. Weinstein, and D. S. Beattie,J. Biol. Chem. 250 (1975) 570.Google Scholar
  13. 13.
    I. C. Kim and D. S. Beattie,Eur. J. Biochem. 36 (1973) 509.Google Scholar
  14. 14.
    M. L. Morse and C. E. Carter,J. Bacterial 58 (1949) 317.Google Scholar
  15. 15.
    M. G. Sevag, J. Smolens, and D. B. Lackman,J. Biol. Chem. 134 (1940) 523.Google Scholar
  16. 16.
    O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall,J. Biol. Chem. 193 (1951) 265.Google Scholar
  17. 17.
    D. Wilson, in:Cell Biology—Biological Handbook, P. L. Altman and D. D. Katz, Eds., Bethesda, Maryland, p. 184, Fed. Amer. Soc. Exp. Biology. (1976).Google Scholar
  18. 18.
    R. A. Firtel and J. T. Bonner,J. Mol. Biol. 66 (1972) 339.Google Scholar
  19. 19.
    H. B. Horwitz and C. E. Holt,J. Cell Biol. 49 (1971) 546.Google Scholar
  20. 20.
    E. Ross and G. Schatz,J. Biol. Chem. 251 (1976) 1997.Google Scholar
  21. 21.
    H. Weiss and B. Ziganke,Eur. J. Biochem. 41 (1974) 63.Google Scholar
  22. 22.
    L. F. H. Lin and D. S. Beattie,The Genetics and the Biogenesis of Chloroplasts and Mitochondria Th. Bücher, W. Neupert, W. Sebald, and S. Werner, Eds., Elsevier/North Holland Biomedical Press, BV, Amsterdam, Netherlands (1976) pp. 281–288.Google Scholar
  23. 23.
    P. P. Slonimski and A. Tzagoloff,Eur. J. Biochem. 27 (1976) 27.Google Scholar
  24. 24.
    L. F. H. Lin, I. C. Kim, and D. S. Beattie,Arch. Biochem. Biophys. 160 (1974) 458.Google Scholar
  25. 25.
    W. Klietmann, K. Kato, B. Gabara, H. Koprowski, and N. Sato,Exp. Cell Res. 78 (1973) 47.Google Scholar
  26. 26.
    R. Lenk and S. Penman,J. Cell Biol. 49 (1971) 541.Google Scholar
  27. 27.
    M. McGill, T. C. Hsu, and B. R. Brinkley,J. Cell Biol. 59 (1973) 260.Google Scholar
  28. 28.
    D. S. Beattie,Sub-cell. Biochem. 1 (1971) 1.Google Scholar
  29. 29.
    F. K. Gleason, M. P. Ooka, W. P. Cunningham, and A. B. Hooper,J. Cell Physiol. 85 (1975) 59.Google Scholar
  30. 30.
    B. Storrie and G. Attardi,J. Cell Biol. 56 (1973) 819.Google Scholar

Copyright information

© Plenum Publishing Corporation 1977

Authors and Affiliations

  • Lawrence Kobilinsky
    • 1
  • Diana S. Beattie
    • 1
  1. 1.Department of BiochemistryMount Sinai School of Medicine of the City University of New YorkNew York

Personalised recommendations