Journal of Bioenergetics and Biomembranes

, Volume 14, Issue 3, pp 181–190 | Cite as

Localization of electron transport inhibition in plastoquinone reactions

  • Wolfgang Haehnel
  • Achim Trebst
Research Articles

Abstract

Reduction kinetics of P700 following a short flash are measured in spinach chloroplasts after oxidation of the electron carriers between the two photoreactions by far-red light. Three features of the kinetics allow us to localize simultaneously inhibition at different sites between photoreaction II and the reducing site of plastoquinol. These are the initial lag, the halftime, and the area under the transient of the P700 absorbance change, which indicate the electron transfer time from photoreaction II to the reducing site of plastoquinol, the rate of plastoquinol oxidation, and the number of electrons transferred to the special plastoquinone B functioning as secondary electron acceptor of photosystem II, respectively. As an additional diagnostic parameter for inhibition before and after the plastoquinone pool, the area under the transient of the P700 absorbance change is used after long flashes. This area is proportional to the amount of reduced plastoquinone as shown by the absorbance change at 265 nm. The effects of 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB) are compared with those of 2-bromo-4-nitrothymol, 2,4-dinitrophenyl ether of 2-iodo-4-nitrothymol, and Illoxan as representatives for new classes of inhibitors. While 2-halogeno-4-nitrothymols inhibit the reduction of plastoquinone similarly to DCMU, their diphenyl ether derivatives inhibit selectively the oxidation of plastoquinol.

Key Words

Plastoquinone P700 electron transport inhibition dinitrophenyl ether of iodo-nitrothymol chloroplasts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Böhme, H., Reimer, S., and Trebst, A. (1971).Z. Naturforsch. Teil B 26 341–351.Google Scholar
  2. Haehnel, W. (1973).Biochim. Biophys. Acta 305 618–631.Google Scholar
  3. Haehnel, W. (1976).Biochim. Biophys. Acta 440 506–521.Google Scholar
  4. Haehnel, W. (1977). InBioenergetics of Membranes (Packer, L., Papageorgiou, G. C., and Trebst, A., eds.), Elsevier, Amsterdam, pp. 317–328.Google Scholar
  5. Haehnel, W., Pröpper, A., and Krause, H. (1980).Biochim. Biophys. Acta 593 384–399.Google Scholar
  6. Kok, B., and Hoch, G. (1961). InLight and Life (McElroy, W. D., and Glass, B., eds.), Johns Hopkins Press, Baltimore, p. 197.Google Scholar
  7. Malkin, S. (1968).Biochim. Biophys. Acta 162 392–401.Google Scholar
  8. Marsho, T. V., and Kok, B. (1970).Biochim. Biophys. Acta 227 240–250.Google Scholar
  9. Nelson, N., Drechsler, Z., and Neumann, J. (1970).J. Biol. Chem. 245 143–151.Google Scholar
  10. Rumberg, B. (1964).Z. Naturforsch. Teil B 19 707–716.Google Scholar
  11. Rumberg, B., and Siggel, U. (1969).Naturwissenschaften 56 130–132.Google Scholar
  12. Siggel, U., Renger, G., Stiehl, H. H., and Rumberg, B. (1972).Biochim. Biophys. Acta 256 338–345.Google Scholar
  13. Stiehl, H. H., and Witt, H. T. (1969).Z. Naturforsch. Teil B 24 1588–1598.Google Scholar
  14. Trebst, A. (1979).Z. Naturforsch. Teil C 34 986–991.Google Scholar
  15. Trebst, A. (1980).Methods Enzymol. 69 675–715.Google Scholar
  16. Trebst, A. (1981). InQuinones in Electron Transport (Trumpower, B. L., ed.), Academic Press, New York, in press.Google Scholar
  17. Trebst, A., Wietoska, H., Draber, W., and Knops, H. J. (1978).Z. Naturforsch. Teil C 33 919–927.Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • Wolfgang Haehnel
    • 1
  • Achim Trebst
    • 1
  1. 1.Lehrstuhl für Biochemie der PflanzenRuhr-Universität BochumBochum 1Federal Republic of Germany

Personalised recommendations