Combustion, Explosion and Shock Waves

, Volume 31, Issue 6, pp 639–644 | Cite as

Laser ignition of a heterogeneous nickel-aluminum system

  • Yu. S. Naiborodenko
  • V. M. Filatov


The ignition of a heterogeneous nickel—aluminum system by laser radiation is investigated experimentally. The ignition characteristics are investigated as a function of the incident flux and the diameter, height, and porosity of the samples. It is established that the ignition of nickel—aluminum composites consisting of highly disperse powder is determined by the solid-phase interaction of the initial reagents.


Ignition Temperature Aluminum Powder Incident Flux Ignition Energy Nickel Aluminides 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. P. Stovbun, T. I. Kedrova, and V. V. Barzykin, “Ignition of systems with refractory reaction products” Fiz. Goren. Vzryva,8, No. 3, 349–354 (1972).Google Scholar
  2. 2.
    V. V. Barzykin and V. P. Stovbun, “Laws of ignition of heterogeneous systems with refractory reaction products”, in: A. G. Merzhanov (ed.), Combustion in Chemical Technology and Metallurgy [in Russian], Chernogolovka (1975), pp 274–283.Google Scholar
  3. 3.
    I. I. Korotkevich, G. V. Khil'chenko, G. P. Polunina, and L. M. Vidavskii, “Initiation of self-propagating high-temperature synthesis by laser pulses”, Fiz. Goren. Vzryva,17, No. 5, 61–67 (1981).Google Scholar
  4. 4.
    V. P. Stovbun, V. V. Barzykin, and K. G. Shkadinskii, “Ignition of heterogeneous systems with condensed products by a constant heat flux”, Fiz. Goren. Vzryva,13, No. 2, 147–155 (1977).Google Scholar
  5. 5.
    V. N. Vilyunov, Theory of the Ignition of Condensed Material [in Russian], Nauka, Novosibirsk (1984), p. 190.Google Scholar
  6. 6.
    P. V. Phung and A. P. Hardt, “Ignition characteristics of gasless reactions” Comb. Flame,22, No. 3, 323–335 (1974).CrossRefGoogle Scholar
  7. 7.
    U. Anselmi-Tamburini and Z. A. Munir, “The propagation of a solid-state combustion wave in Ni−Al foils”, J. Appl. Phys., No. 10, 5039–5045 (1989).CrossRefADSGoogle Scholar
  8. 8.
    Yu. S. Naiborodenko, V. I. Itin, and K. V. Savitskii, “Exothermal effects in the sintering of nickel—aluminum powder mixtures”, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 10, 27–35, 103–108 (1968).Google Scholar
  9. 9.
    A. G. Gasparyan and A. S. Shteinberg, “Macrokinetics of the interaction and thermal explosion in Ni−Al powder mixtures”, Fiz. Goren. Vzryva,24, No. 3, 67–74 (1988).Google Scholar
  10. 10.
    Yu. S. Naiborodenko, V. I. Itin, and B. P. Belozerov, “Nature of the phases and kinetics of reaction diffusion in a mixture of nickel and aluminum powder”, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 11, 34–40 (1973).Google Scholar
  11. 11.
    K. A. Philpot, Z. A. Munir, and J. B. Half, “An investigation of the synthesis of nickel aluminides through gasless combustion”. J. Mater. Sci.,22, 159–169 (1987).CrossRefGoogle Scholar
  12. 12.
    Yu. S. Naiborodenko and V. I. Itin, “Gasless combustion of metal powder mixtures. I. Laws and mechanism of combustion”, Fiz. Goren. Vzryva,11, No. 3, 343–353 (1975).Google Scholar
  13. 13.
    M. A. Korchagin, V. V. Aleksandrov, and V. A. Neronov, “Phase composition of intermediate reaction products of nickel and aluminum”, Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim Nauk, No. 14, issue 6, 104–111 (1979).Google Scholar
  14. 14.
    V. V. Aleksandrov and M. A. Korchagin, “Reaction mechanism and macrokinetics in the combustion of systems for self-propagating high-temperature synthesis”, Fiz. Goren. Vzryva23, No. 5, 55–63 (1987).Google Scholar
  15. 15.
    V. I. Itin and Yu. S. Naiborodenko, High-Temperature Synthesis of Intermetallic Componds [in Russian], Izd. Tomsk. Univ., Tomsk (1989), p. 214.Google Scholar
  16. 16.
    Yu. S. Naiborodenko, N. G. kasatskii, G. V. Lavrenchuk, et al., “Influence of thermovacuum treatment on the combustion of gasless systems” in: Combustion of Condensed and Heterogeneous Systems: Proceedings of the Sixth All-Union Symposium on Combustion and Explosion, Alma-Ata, 1980 [in Russian], Chernogolovka, 1980, pp. 74–77.Google Scholar
  17. 17.
    K. I. Gavrilov and V. P. Lyubovoi, “Phase interaction at the solid—liquid boundary in contact melting and its role in activating the gasless combustion of powder systems. Fiz. Goren. Vzryva,25, No. 4, 72–75 (1989).Google Scholar
  18. 18.
    A. P. Savitskii, Liquid-Phase Sintering of Systems with Interacting Components [in Russian], Nauka, Novosibirsk (1991), p. 184.Google Scholar
  19. 19.
    M. I. Shilyaev, V. É. Borzykh, and A. R. Dorokhov, “Laser ignition of nickel—aluminum powder systems”, Fiz. Goren. Vzryva,30, No. 2, 14–18 (1994).Google Scholar
  20. 20.
    N. G. Kasatskii, Yu. S. Naiborodenko, and O. A. Shkoda, “Structural methods of investigating the kinetics of solidphase interaction in nickel—aluminum powder mixtures”, in: Powder Materials and Coatings: Proceedings of the Third Regional Engineering Conference [in Russian], Barnaul (1990), pp. 58–59.Google Scholar
  21. 21.
    K. G. Shkadinskii, B. I. Khaikin, and A. G. Merzhanov, “Propagation of pulsating exothermal reaction front in condensed phase”, Fiz. Goren. Vzryva,7, No. 1, 19–28 (1971).Google Scholar
  22. 22.
    A. G. Strunina, N. I. Vaganova, and V. V. Barzykin, “Energetic analysis of the ignition of gasless wave-combustion systems”, Fiz. Goren. Vzryva,13, No. 6, 835–845 (1977).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Yu. S. Naiborodenko
  • V. M. Filatov

There are no affiliations available

Personalised recommendations