Effect of phosphate and adenine nucleotides on the rate of labeling of functional groups at the catalytic site of F1-ATPase

  • Ling Pai Ting
  • Jui H. Wang
Research Articles

Abstract

The effect of inorganic phosphate, ADP, ATP, and their analogues on the rate of labeling of F1-ATPase by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) and phenylglyoxal have been investigated. Analysis of the kinetic data indicate that the labeled functional groups of the essential tyrosine and arginine residues respectively are both located at the catalytic site of F1. The active phenolic group of tyrosine is located closer to the bound inorganic phosphate or the γ-phosphate group than the α- and β-phosphate groups of the bound ATP at the catalytic site, whereas the guanidinium group of arginine is located closer to the α- and β-phosphate groups of the bound ATP than to its γ-phosphate group or the bound inorganic phosphate. The kinetically deduced dissociation constants are 1.3 mM and 210 µM for the inorganic phosphate and ADP respectively bound to this catalytic site. Labeling the essential tyrosine residue by NDB-Cl has been found to facilitate subsequent labeling of the essential arginine residue by phenylglyoxal.

Keywords

Tyrosine Arginine Adenine Dissociation Constant Guanidinium 

Abbreviations

NBD-Cl

7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (this compound has been named 4-chloro-7-nitro-benzofurazan and abbreviated NBf-Cl elsewhere)

DTT

dithiothreitol

EDTA

ethylenediaminetetraacetic acid

Pi

inorganic phosphate

PEP

phosphoenolpyruvate

ADPCP

β,γ-methylene-adenosine 5′-triphosphate

AMPCP

α,β-methylene-adenosine 5′-diphosphate

Hepes

N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid

Tris

2-amino-2(hydroxymethyl)-1,3-propanediol

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. L. Pedersen,Bioenergetics 6 (1975) 243–275.Google Scholar
  2. 2.
    P. L. Pedersen, L. M. Amzel, J. W. Soper, N. Cintron, and J. Hullihen, inEnergy Conservation in Biological Membrane G. Schäfer and M. Klingenberg, eds., Springer-Verlag, Berlin-New York (1978), pp. 159–194.Google Scholar
  3. 3.
    N. Nelson,Biochim. Biophys. Acta 456 (1976) 314–338.Google Scholar
  4. 4.
    I. A. Kozlov and V. P. Skulachev,Biochim. Biophys. Acta 463 (1977) 29–89.Google Scholar
  5. 5.
    D. A. Harris,Biochim. Biophys. Acta 463 (1978) 245–273.Google Scholar
  6. 6.
    B. A. Baird and G. G. Hammes,Biochim. Biophys. Acta 549 (1979) 31–53.Google Scholar
  7. 7.
    A. E. Senior,Biochemistry 14 (1975) 660–664.Google Scholar
  8. 8.
    R. J. Wagenvoord, I. van der Kraan, and A. Kemp,Biochim. Biophys. Acta 460 (1977) 17–24.Google Scholar
  9. 9.
    L. M. Amzel and P. L. Pedersen,J. Biol. Chem. 253 (1978) 2067–2069.Google Scholar
  10. 10.
    E. C. Slater, A. Kemp, I. Van der Kraan, J. L. M. Muller, O. A. Roveri, G. J. Verschoor, R. J. Wagenvoord, and J. P. M. Wielders,FEBS Lett. 103 (1979) 7–11.Google Scholar
  11. 11.
    H. S. Penefsky,J. Biol. Chem. 252 (1977) 2891–2899.Google Scholar
  12. 12.
    M. Kasahara and H. S. Penefsky, inStructure and Function of Energy Transducing Membrane K. van Dam and B. F. van Gelder, eds., Elsevier, New York (1977), pp. 295–305.Google Scholar
  13. 13.
    M. Kasahara and H. S. Penefsky,J. Biol. Chem. 253 (1978) 4180–4187.Google Scholar
  14. 14.
    S. J. Ferguson, W. J. Lloyd, and G. K. Radda,Eur. J. Biochem. 54 (1975) 127–133.Google Scholar
  15. 15.
    S. J. Ferguson, W. J. Lloyd, M. H. Lyons, and G. K. Radda,Eur. J. Biochem. 54 (1975) 117–126.Google Scholar
  16. 16.
    F. Marcus, S. M. Schuster, and H. A. Lardy,J. Biol. Chem. 251 (1976) 1775–1780.Google Scholar
  17. 17.
    L. Frigeri, Y. M. Galante, and Y. Hatefi,J. Biol. Chem. 253 (1978) 3147–3152.Google Scholar
  18. 18.
    L. Frigeri, Y. M. Galante, and Y. Hatefi,J. Biol. Chem. 253 (1978) 8935–8940.Google Scholar
  19. 19.
    W. E. Kohlbrenner and R. L. Cross,J. Biol. Chem. 253 (1978) 7609–7611.Google Scholar
  20. 20.
    F. S. Esch and W. S. Allison,J. Biol. Chem. 253 (1978) 6100–6106.Google Scholar
  21. 21.
    H. Löw and I. Vallin,Biochim. Biophys. Acta 69 (1963) 361–374.Google Scholar
  22. 22.
    A. F. Knowles and H. S. Penefsky,J. Biol. Chem. 247 (1972) 6617–6623.Google Scholar
  23. 23.
    K. Weber and H. Osborn,J. Biol. Chem. 244 (1969) 4406–4412.Google Scholar
  24. 24.
    M. M. Bradford,Anal. Biochem. 72 (1976) 248.Google Scholar
  25. 25.
    H. S. Penefsky,J. Biol. Chem. 252 (1977) 2891–2899.Google Scholar
  26. 26.
    R. C. Steinmeier and J. H. Wang,Biochemistry 18 (1979) 11–18.Google Scholar
  27. 27.
    J. Lunardi and P. V. Vignais,FEBS Lett. 102 (1979) 23–28.Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • Ling Pai Ting
    • 1
  • Jui H. Wang
    • 1
  1. 1.Bioenergetics Laboratory, Acheson HallState University of New YorkBuffalo

Personalised recommendations