Skip to main content
Log in

Interacting effects of dibutylchloromethyltin chloride, 2,3-dimercaptopropanol, and other reagents on mitochondrial respiration and K+ flux

  • Research Articles
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The oxidative phosphorylation inhibitor DBCT (dibutylchloromethyltin chloride) inhibits state 3 respiration at a concentration less than that which stimulates K+ flux into respiring rat liver mitochondria. Inhibition of ADP-stimulated respiration by DBCT can be reversed or blocked by the dithiol 2,3-dimercaptopropanol. The data are consistent with previous suggestions that DBCT may interact with the ATP synthase via reaction with a dithiol group. The stimulation of K+ influx by DBCT is partially reversed by concentrations of 2-mercaptoethanol which fail to affect the inhibition of state 3 respiration by DBCT. The combination of DBCT plus 2,3-dimercaptopropanol inhibits mitochondrial K+ influx. The inhibitory effect of dicyclohexylcarbodiimide on K+ influx is not expressed in the presence of DBCT. Atractyloside has little effect on K+ influx in the presence or absence of DBCT. The combination of DBCT plus uncoupler induces a net loss of endogenous K+. Consideration is given to the alternative hypotheses that the acceleration of K+ influx by DBCT may involve either a direct link to the energy transduction apparatus, or may occur via separate activation of a passive transport mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldridge, W. N., Street, B. W., and Skilleter, D. N. (1977).Biochem. J. 168 353–364.

    Google Scholar 

  • Azzone, G. F., Bortolotto, F., and Zanotti, A. (1978).FEBS Lett. 96 135–140.

    Google Scholar 

  • Bogucka, K., and Wojtczak, L. (1979).FEBS Lett. 100 301–304.

    Google Scholar 

  • Brierley, G. P., Jurkowitz, M., and Jung, D. W. (1978).Arch. Biochem. Biophys. 190 181–192.

    Google Scholar 

  • Bygrave, F. L., Ramachandran, C., and Robertson, R. N. (1978).Arch. Biochem. Biophys. 188 301–307.

    Google Scholar 

  • Cain, K., and Griffiths, D. E. (1977).Biochem. J. 162 575–580.

    Google Scholar 

  • Cain, K., Partis, M. D., and Griffiths, D. E. (1977).Biochem. J. 166 593–602.

    Google Scholar 

  • Chavez, E., Jung, D. W., and Brierley, G. P. (1977).Arch. Biochem. Biophys. 183 460–470.

    Google Scholar 

  • Dawson, A. P., Farrow, B. G., and Selwyn, M. J. (1982).Biochem. J. 202 163–169.

    Google Scholar 

  • Diwan, J. J. (1981).Biochem. Soc. Trans. 9 153–154.

    Google Scholar 

  • Diwan, J. J. (1982).J. Bioenerg. Biomembr. 14 15–22.

    Google Scholar 

  • Diwan, J. J., Daze, M., Richardson, R., and Aronson, D. (1979).Biochemistry 18 2590–2595.

    Google Scholar 

  • Diwan, J. J., and Lehrer, P. H. (1978).Membr. Biochem. 1 43–60.

    Google Scholar 

  • Diwan, J. J., Markoff, M., and Lehrer, P. H. (1977).Indian J. Biochem. Biophys. 14 342–346.

    Google Scholar 

  • Diwan, J. J., and Tedeschi, H. (1975).FEBS Lett. 60 176–179.

    Google Scholar 

  • Dordick, R. S., Brierley, G. P., and Garlid, K. D. (1980).J. Biol. Chem. 255 10299–10305.

    Google Scholar 

  • Duee, E., and Vignais, P. V. (1969).J. Biol. Chem. 244 3920–3931.

    Google Scholar 

  • Fluharty, A. L., and Sanadi, D. R. (1961).J. Biol. Chem. 236 2772–2777.

    Google Scholar 

  • Garlid, K. D. (1980).J. Biol. Chem. 255 11273–11279.

    Google Scholar 

  • Gauthier, L. M., and Diwan, J. J. (1979).Biochem. Biophys. Res. Commun. 87 1072–1079.

    Google Scholar 

  • Harris, E. J. (1978).Biochem. J. 176 983–991.

    Google Scholar 

  • Harris, E. J., and VanDam, K. (1968).Biochem. J. 106 759–766.

    Google Scholar 

  • Johnson, J. H., and Pressman, B. C. (1969).Arch. Biochem. Biophys. 132 139–145.

    Google Scholar 

  • Joshi, S., and Hughes, J. B. (1981).J. Biol. Chem. 256 11112–11116.

    Google Scholar 

  • Joshi, S., Hughes, J. B., Shaikh, F., and Sanadi, D. R. (1979).J. Biol. Chem. 254 10145–10152.

    Google Scholar 

  • Joshi, S., and Sanadi, D. R. (1979).Methods Enzymol. 55 384–391.

    Google Scholar 

  • Jung, D. W., Chavez, E., and Brierley, G. P. (1977).Arch. Biochem. Biophys. 183 452–459.

    Google Scholar 

  • Jung, D. W., Shi, G.-Y., and Brierley, G. P. (1980).J. Biol. Chem. 255 408–412.

    Google Scholar 

  • Jung, D. W., Shi, G.-Y., and Brierley, G. P. (1981).Arch. Biochem. Biophys. 209 356–361.

    Google Scholar 

  • Kiehl, R., and Hatefi, Y. (1980).Biochemistry 19 541–548.

    Google Scholar 

  • LaNoue, K., Mizani, S. M., and Klingenberg, M. (1978).J. Biol. Chem. 253 191–198.

    Google Scholar 

  • Layne, E. (1957).Methods Enzymol. 3 447–454.

    Google Scholar 

  • Moore, A. L., Linnett, P. E., and Beechey, R. B. (1980).J. Bioenerg. Biomembr. 12 309–323.

    Google Scholar 

  • Nakashima, R. A., Dordick, R. S., and Garlid, K. D. (1982).J. Biol. Chem. 257 12540–12545.

    Google Scholar 

  • Nicholls, D. G. (1974).Eur. J. Biochem. 50 305–315.

    Google Scholar 

  • Panov, A., Filippova, S., and Lyakhovich, V. (1980).Arch. Biochem. Biophys. 199 420–426.

    Google Scholar 

  • Partis, M. D., Bertoli, E., Griffiths, D. E., and Azzi, A. (1980).Biochem. Biophys. Res. Commun. 96 1103–1108.

    Google Scholar 

  • Pressman, B. C., Harris, E. J., Jagger, W. S., and Johnson, J. H. (1967).Proc. Natl. Acad. Sci. USA 58 1949–1956.

    Google Scholar 

  • Rasheed, B. K. A., and Sanadi, D. R. (1983).Fed. Proc. 42 1947.

    Google Scholar 

  • Sanadi, D. R. (1982).Biochim. Biophys. Acta 683 39–56.

    Google Scholar 

  • Sanadi, D. R., Hughes, J. B., and Johshi, S. (1981)J. Bioenerg. Biomembr. 13 425–431.

    Google Scholar 

  • Shankaran, R., Sani, B. P., and Sanadi, D. R. (1975).Arch. Biochem. Biophys. 168 394–402.

    Google Scholar 

  • Srivastava, J., and Diwan, J. J. (1983).Biophys. Soc. Abstr. 41, 139a.

    Google Scholar 

  • Stiggall, D. L., Galante, Y. M., Kiehl, R., and Hatefi, Y. (1979).Arch. Biochem. Biophys. 196 638–644.

    Google Scholar 

  • VanArk, G., Raap, A. K., Berden, J. A., and Slater, E. C. (1981).Biochim. Biophys. Acta 637 34–42.

    Google Scholar 

  • Zhu, Q. S., Berden, J. A., Devries, S. and Slater, E. C. (1982).Biochim. Biophys. Acta 680 69–79.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Abbreviations used: DBCT, dibutylchloromethyltin chloride; BAL, British Anti-Lewisite or 2,3-dimercaptopropanol;; 2-ME, 2-mercaptoethanol; DCCD, dicyclohexylcarbodiimide; DNP, 2,4-dinitrophenol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diwan, J.J., DeLucia, A. & Rose, P.E. Interacting effects of dibutylchloromethyltin chloride, 2,3-dimercaptopropanol, and other reagents on mitochondrial respiration and K+ flux. J Bioenerg Biomembr 15, 277–288 (1983). https://doi.org/10.1007/BF00744525

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00744525

Key words

Navigation