Skip to main content
Log in

Inhibition by valinomycin of atractyloside binding to the membrane-bound ADP/ATP carrier: Counteracting effect of cations

  • Research Articles
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The atractyloside binding capacity of rat heart mitochondria, but not the binding affinity, was markedly decreased by preincubation of the mitochondria with valinomycin in isotonic KCl medium. Maximum inhibition was attained with 5 ng of valinomycin per mg of mitochondrial protein; it corresponded to a 40% decrease of the atractyloside binding capacity. The inhibitory effect of valinomycin was maximal between pH 7.0 and 7.5. It was more marked for heart mitochondria than for liver mitochondria. Valinomycin inhibition of atractyloside binding to heart mitochondria was counteracted by nigericin and FCCP, by sublytic concentrations of cationic surfactants such as cetyltrimethylammonium bromide, and by low concentrations of trivalent and divalent metal ions at acidic pH's still compatible with atractyloside binding, i.e., down to pH 5.5; trivalent metal ions were more effective than divalent metal ions. The effect of valinomycin was also counteracted by exceedingly high concentrations of K+ (more than 300 mM), resulting in a substantial increase in the ionic strength. These results were discussed in terms of the relation between the atractyloside binding capacity of the inner mitochondrial membrane and the surface potential of this membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam, H. (1963a). InMethods in Enzymatic Analysis (Bergmeyer, H. V., ed.), Academic Press, New York, pp. 539–543.

    Google Scholar 

  • Adam, H. (1963b). InMethods in Enzymatic Analysis (Bergmeyer, H. V., ed.), Academic Press, New York, pp. 573–577.

    Google Scholar 

  • Aiuchi, T., Kamo, N., Kurihara, K., and Kobatake, Y. (1977).Biochemistry 16 1626–1630.

    Google Scholar 

  • Barber, J. (1980).Biochim. Biophys. Acta 594 253–308.

    Google Scholar 

  • Brandolin, G., Meyer, C., Defaye, G., Vignais, P. M., and Vignais, P. V. (1974).FEBS Lett. 49 149–153.

    Google Scholar 

  • De Vendittis, E., Palumbo, G., Parlato, G., and Bocchini, V. (1981).Anal. Biochem. 115 278–286.

    Google Scholar 

  • Douzou, P., and Maurel, P. (1977).Trends Biochem. Sci. 2 14–17.

    Google Scholar 

  • Duszynski, J., and Wojtczak, L. (1974).FEBS Lett. 40 72–76.

    Google Scholar 

  • Engasser, J. M., and Horwath, C. (1975).Biochem. J. 145 431–435.

    Google Scholar 

  • Goldstein, L. (1972).Biochemistry 11 4072–4084.

    Google Scholar 

  • Goldstein, L., Levin, Y., and Katchalski, E. (1964).Biochemistry 3 1913–1919.

    Google Scholar 

  • Kamo, N., Muratsugu, M., Kurihara, K., and Kobatake, Y. (1976).FEBS Lett. 72 247–250.

    Google Scholar 

  • Ligeti, E., and Fonyo, A. (1977).FEBS Lett. 79 33–36.

    Google Scholar 

  • Maurel, P., and Douzou, P. (1976).J. Mol. Biol. 102 253–264.

    Google Scholar 

  • Meisner, H. (1971).Biochemistry 10 3485–3491.

    Google Scholar 

  • Meisner, H. (1973).Biochim. Biophys. Acta 318 383–389.

    Google Scholar 

  • Michejda, J., and Vignais, P. V. (1981).FEBS lett. 132 129–132.

    Google Scholar 

  • Morel, F., Lauquin, G., Lunardi, J., Duszynski, J., and Vignais, P. V. (1974).FEBS Lett. 39 133–138.

    Google Scholar 

  • Quintanilha, A. T., and Packer, L. (1977a).FEBS Lett. 78 161–165.

    Google Scholar 

  • Quintanilha, A. T., and Packer, L. (1977b).Proc. Natl. Acad. Sci. USA 74 570–574.

    Google Scholar 

  • Remy, M. H., David, A., and Thomas, D. (1978).FEBS Lett. 88 332–336.

    Google Scholar 

  • Ricard, J., Noat, G., Grasnier, M., and Job, D. (1981).Biochem. J. 195 3485–3491.

    Google Scholar 

  • Thomas, J. A., Buchsbaum, R. N., Zimniak, A., and Racker, E. (1979).Biochemistry 18 2210–2218.

    Google Scholar 

  • Toninello, A., Siliprandi, D., and Siliprandi, N. (1982).FEBS Lett. 142 63–66.

    Google Scholar 

  • Tyler, D. P., and Gonze, J. (1976).Methods Enzymol. 10 75–77.

    Google Scholar 

  • Vignais, P. V., and Vignais, P. M. (1972).FEBS Lett. 26 27–31.

    Google Scholar 

  • Vignais, P. M., Chabert, J., and Vignais, P. V. (1975). InBiomembranes, Structure and Function (Gardos, G., and Szasz, I., eds.), North-Holland, Amsterdam, pp. 307–313.

    Google Scholar 

  • Vignais, P. V. (1976).Biochim. Biophys. Acta 456 1–38.

    Google Scholar 

  • Vignais, P. V., Lauquin, G. J. M., and Vignais, P. M. (1976). InMitochondria, Bioenergetics, Biogenesis, and Membrane Structure (Packer, L., and Gomez-Puyou, A., eds.), Academic Press, New York, pp. 109–125.

    Google Scholar 

  • Waggoner, A. S., Wang, C. H., and Tolles, R. L. (1977).J. Membr. Biol. 33 109–140.

    Google Scholar 

  • Wharton, C. W., Crook, E. M., and Brocklehurst, K. (1968).Eur. J. Biochem. 6 572–578.

    Google Scholar 

  • Wojtczak, L., and Nalecz, M. J. (1979).Eur. J. Biochem. 94 99–107.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vignais, P.V., Michejda, J.W. & Doussiere, J. Inhibition by valinomycin of atractyloside binding to the membrane-bound ADP/ATP carrier: Counteracting effect of cations. J Bioenerg Biomembr 15, 243–256 (1983). https://doi.org/10.1007/BF00744523

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00744523

Key Words

Navigation