Journal of Bioenergetics and Biomembranes

, Volume 17, Issue 2, pp 123–134 | Cite as

Characterization of the photosynthetic electron transport chain in normal and photobleachedAnabaena cylindrica by flash spectroscopy

  • Klára Barabás
  • Ilona Laczkó
Research Articles


Electron transport of normal and photobleachedAnabaena cylindrica was studied using spectral and kinetic analyses of absorbance transients induced by single turnover flashes. Between 500 and 600 nm two positive bands (∼540 and ∼566 nm) and two negative bands (∼515 and ∼554 nm) were found. Absorbance changes at 515 and 540 nm were partly characterized. None of these absorbance changes represent an electrochromic shift. Absorbance changes at 554 and 566 nm correspond to the oxidation of cytochromef and the reduction of cytochromeb563, respectively. We found a very slight 3-(3,4-dichlorophenyl)-1, 1-dimethylurea (DCMU) sensitivity of cytochromef in normal cells, while DCMU was completely ineffective for cytochromef reduction in photobleached cells. The absorbance change of cytochromeb563 increased, while the absorbance change of cytochromef was smaller than in normal cells. The increased O2 evolution in photobleached cells and the negligible electron transport via cytochromef suggest the participation of other electron acceptor(s) in the electron-transport chain of photobleachedAnabaena cylindrica.

Key Words

Electron transport cytochromef Anabaena cylindrica 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, M. B., and Arnon, D. I. (1955).Plant Physiol. 30, 366–372.Google Scholar
  2. Almon, H., and Böhme, H. (1980).Biochim. Biophys. Acta 592, 113–120.Google Scholar
  3. Amesz, I., and Visser, J. W. M. (1971).Biochim. Biophys. Acta 234, 62–69.Google Scholar
  4. Anderson, I. M. (1981).FEBS Lett. 124, 1–10.Google Scholar
  5. Aoki, M., Hirano, M., Takahashi, Y., and Katoh, S. (1983).Plant Cell Physiol. 24, 517–525.Google Scholar
  6. Binder, A. (1982).J. Bioenerg. Biomembr. 14, 271–286.Google Scholar
  7. Böhme, H., Pelzer, B., and Böger, P. (1980).Biochim. Biphys. Acta 592, 528–535.Google Scholar
  8. Bradley, S., and Carr, N. G. (1976).J. Gen. Microbiol. 96, 175–184.Google Scholar
  9. Haselkon, R. (1978).Annu. Rev. Plant Physiol. 29, 319–344.Google Scholar
  10. Hirano, M., Satoh, K., and Katoh, S. (1980).Photosynth. Res. 1, 149–162.Google Scholar
  11. Hirano, M., and Katoh, S. (1981).Photochem. Photobiol. 34, 637–643.Google Scholar
  12. Hirano, M., Satoh, K., and Katoh, S. (1981).Biochim. Biophys. Acta 635, 476–487.Google Scholar
  13. Ho, K. K., and Krogmann, D. W. (1982). InBotanical Monographs: The Biology of the Cyanobacteria (Carr, N. G., and Whitton, B. A., eds.), Blackwell, Oxford.Google Scholar
  14. Horváth, G., Niemi, H. A., Droppa, M., and Faludi-Dániel, A. (1979).Plant Physiol. 63, 778–782.Google Scholar
  15. Houchins, I. P., and Hind, G. (1983a).Biochim. Biophys. Acta 725, 138–145.Google Scholar
  16. Houchins, J. P., and Hind, G. (1983b).Arch. Biochem. Biophys. 224, 272–282.Google Scholar
  17. Kawamura, M., Mimuro, M., and Fujita, Y. (1979).Plant Cell Physiol. 20, 697–705.Google Scholar
  18. Laczkó, I., and Barabás, K. (1981).Planta 153, 312–316.Google Scholar
  19. Lockau, W. (1981).Arch. Microbiol. 128, 336–340.Google Scholar
  20. Marsho, T. V., and Kok, B. (1980).Methods Enzymol. 69, 280–289.Google Scholar
  21. Melis, A., and Brown, J. (1980).Proc. Natl. Acad. Sci. USA 77, 4712–4716.Google Scholar
  22. Meyers, J., Graham, J-R., and Wang, R. T. (1980).Plant Physiol. 66, 1141–1143.Google Scholar
  23. Murai, T., and Katoh, T. (1975).Plant Cell Physiol. Tokyo 16, 759–797.Google Scholar
  24. Nolan, W. G., and Bishop, D. G. (1975).Arch Biochem. Biophys. 166, 323–329.Google Scholar
  25. Padan, E. (1979).Annu. Rev. Plant Physiol. 30, 27–40.Google Scholar
  26. Peschek, G. (1983).Biochem. J. 210, 269–272.Google Scholar
  27. Sandmann, G., and Böger, P. (1980).Plant Sci. Lett. 17, 417–424.Google Scholar
  28. Sörensen, L., and Halldal, P. (1977).Photochem. Photobiol. 26, 511–518.Google Scholar
  29. Spiller, M. (1980).Plant Physiol. 66, 446–450.Google Scholar
  30. Spurr, A. R. (1969).J. Ultrastruct. Res. 26, 31–43.Google Scholar
  31. Wasserman, A. R. (1980).Methods Enzymol. 69, 181–202.Google Scholar
  32. Witt, H. T. (1980).Biochim. Biphys. Acta 505, 355–427.Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • Klára Barabás
    • 1
  • Ilona Laczkó
    • 1
  1. 1.Institute of Biophysics, Biological Research CenterHungarian Academy of SciencesSzegedHungary

Personalised recommendations