Skip to main content
Log in

The role of Mg2+ in the regulation of the structural and functional steady-states in rat liver mitochondria

  • Research Articles
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

A possible relationship between mitochondrial Mg2+ levels, structural configurations, and functional steady states has been studied in rat liver mitochondria. The results show that the concentration of mitochondrial Mg2+ in respiratory state 4 is definitely higher than in respiratory state 3. The metabolic transition from state 3 to state 4 and vice-versa is associated with reversible influx-efflux of about 10 nmol of Mg2+ per mg protein. The net uptake of this aliquot of Mg2+ is a necessary condition in order for the metabolic transition to state 4, both structurally and functionally, to occur. This process requires a threshold concentration of external Mg2+ greater than 5 mM. The phosphorylative mechanism does not appear to depend on the presence or absence of external Mg2+. The role of Mg2+ on the attainment and maintenance of the structural and functional steady state 4 seems to be correlated with its regulatory effect on the concentration of the mitochondrial Pi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abou-Khalil, S., and Hanson, J. B. (1977). Net adenosine diphosphate accumulation in mitochondria,Arch. Biochem. Biophys. 183 581–587.

    Google Scholar 

  • Åkerman, K. E. O. (1981). Inhibition and stimulation of respiration-linked Mg2+ efflux in rat heart mitochondria,J. Bioenerg. Biomembr. 13 133–139.

    Google Scholar 

  • Azzone, G. F., Massari, S., and Pozzan, T. (1976). Mechanism of active shrinkage in mitochondria. I. Coupling between weak electrolyte fluxes,Biochim. Biophys. Acta 423 15–26.

    Google Scholar 

  • Binet, A., and Volfin, P. (1975). Effect of the A23187 ionophore on mitochondrial membrane Mg2+ and Ca2+,FEBS Lett. 49 400–403.

    Google Scholar 

  • Blair, P. V. (1977). Induction of mitochondrial contraction and concomitant inhibition of succinate oxidation by magnesium ions,Arch. Biochem. Biophys. 181 550–568.

    Google Scholar 

  • Bogucka, K., and Wojtczak, L. (1971). Intramitochondrial distribution of magnesium,Biochem. Biophys. Res. Commun. 44 1330–1337.

    Google Scholar 

  • Brierley, G. P., Bachman, E., and Green, D. E. (1962). Active transport of inorganic phosphate and magnesium ions by beef heart mitochondria,Proc. Natl. Acad. Sci. U.S.A. 48 1928–1935.

    Google Scholar 

  • Brierley, G. P. (1976). The uptake and extrusion of monovalent cations by isolated heart mitochondria,Mol. Cell. Biochem. 10 41–62.

    Google Scholar 

  • Chance, B., and Williams, G. R. (1956). The respiratory chain and oxidative phosphorylation,Adv. Enzymol. 17 65–90.

    Google Scholar 

  • Coelho, J. L. C., and Vercesi, A. E. (1980). Retention of Ca2+ by rat liver and rat heart mitochondria: effect of phosphate, Mg2+, and NAD(P) redox state,Arch. Biochem. Biophys. 204 141–147.

    Google Scholar 

  • Crompton, M., Capano, M., and Carafoli, E. (1976). Respiration-dependent efflux of magnesium ions from heart mitochondria,Biochem. J. 154 735–742.

    Google Scholar 

  • Diwan, J. J., Dazé, M., Richardson, R., and Aronson, D. (1979). Kinetics of Mg2+ flux into rat liver mitochondria,Biochemistry 12 2590–2595.

    Google Scholar 

  • Diwan, J. J., Aronson, D., and Gonsalves, N. O. (1980). Effect of mersalyl on mitochondrial Mg2+ flux,J. Bioenerg. Biomembr. 12 205–212.

    Google Scholar 

  • Fiskum, G., and Lehninger, A. L. (1979). Regulated release of Ca2+ from respiring mitochondria by Ca2+/H+ antiport,J. Biol. Chem. 254 6236–6239.

    Google Scholar 

  • Fonyo, A., Ligeti, E., and Baum, H. (1977). The nature of absorbance changes following the addition of ADP to mitochondria: ATP synthesis from intramitochondrial inorganic phosphate,J. Bioenerg. Biomembr. 9 213–231.

    Google Scholar 

  • Guarriero-Bobyleva, V., Ceccarelli-Stanzani, D., Masini, A., and Muscatello, U. (1982). The relation between structural and metabolic steady states in isolated rat liver mitochondria,J. Submicrosc. Cytol. 14 461–470.

    Google Scholar 

  • Harris, J., and Van Dam, K. (1968). Changes of total water and sucrose space accompanying induced ion uptake or phosphate swelling of rat liver mitochondria,Biochem. J. 106 759–766.

    Google Scholar 

  • Hayashi, J., and Tagashira, Y. (1980). A general characteristic of tumor mitochondria: leakage of endogenous Mg2+ on incubation with uncoupler and resultant reduction of uncouplerstimulated ATPase activity,Arch. Biochem. Biophys. 205 27–35.

    Google Scholar 

  • Heaton, G. M., and Nicholls, D. J. (1976). The calcium conductance of the inner membrane of rat liver mitochondria and the determination of the calcium electrochemical gradient,Biochem. J. 156 635–646.

    Google Scholar 

  • Heaton, F. W., and George, G. A. (1979). Submitochondrial distribution of magnesium and calcium: changes during magnesium deficiency,Int. J. Biochem. 10 275–278.

    Google Scholar 

  • Hoser, N., Dargel, L., Dawczynsky, H., and Winnefeld, K. (1976). Respiration-dependent stimulation by inorganic phosphate of Mg2+ release from rat liver mitochondria,FEBS Lett. 72 193–196.

    Google Scholar 

  • Johnson, J. H., and Pressman, B. C. (1969). Rates of exchange of mitochondrial Mg2+ determined from28Mg flux measurements,Arch. Biochem. Biophys. 132 139–145.

    Google Scholar 

  • Judah, J. D., Ahmed, K., McLean, A. E. M., and Christie, G. S. (1965). Uptake of magnesium and calcium by mitochondria in exchange for hydrogen ions,Biochim. Biophys. Acta 94 452–460.

    Google Scholar 

  • Kun, E. (1976). Kinetics of ATP-dependent Mg2+ flux in mitochondria,Biochemistry 15 2328–2336.

    Google Scholar 

  • Lang, L. D. A., and Bronk, J. R. (1978). A study of rapid mitochondrial structural changesin vitro by spray-freeze etching,J. Cell. Biol. 77 134–147.

    Google Scholar 

  • Lehninger, A. L. (1951). Phosphorylation coupled to oxidation of DPNH,J. Biol. Chem. 190 345–359.

    Google Scholar 

  • Ligeti, E., and Horvath, L. I. (1980). Effect of Mg2+ on membrane fluidity and K+ transport in rat liver mitochondria,Biochim. Biophys. Acta 600 150–156.

    Google Scholar 

  • Masini, A., Ceccarelli-Stanzani, D., and Muscatello, U. (1981a). Relationship between endogenous Mg2+ level and metabolic steady states in isolated rat liver mitochondria, FEBS Meet., 29 March-3 April, Edinburgh, Abstr. 14th, p. 320.

  • Masini, A., Ceccarelli-Stanzani, D., and Muscatello, U. (1981b). Effect of external magnesium ion concentration on functional steady states of isolated rat liver mitochondria,IRCS Med. Sci. 9 769–770.

    Google Scholar 

  • Masini, A., Ceccarelli-Stanzani, D., and Muscatello, U. (1982). Requirement of Mg ions for the transition from steady state 3 to steady state 4 in isolated rat liver mitochondria,IRCS Med. Sci. 10 1038–1039.

    Google Scholar 

  • Munn, E. A. (1974). InThe structure of mitochondria, Academic Press, New York and London, pp. 320–356.

    Google Scholar 

  • Muscatello, U., Guarriero-Bobyleva, V., and Buffa, P. (1972a). Configurational changes in isolated rat liver mitochondria as revealed by negative staining. I. Modifications caused by osmotic and other factors,J. Ultrastruct. Res. 40 215–235.

    Google Scholar 

  • Muscatello, U, Guarriero-Bobyleva, V., and Buffa, P. (1972b). Configurational changes in isolated rat liver mitochondria as revealed by negative staining. II. Modifications caused by changes in respiratory states,J. Ultrastruct. Res. 40 235–260.

    Google Scholar 

  • Muscatello, U., Pasquali-Ronchetti, I., and Guarriera-Bobyleva, V. (1978). Conformational changes of mitochondrial inner membrane associated with uncoupling of respiration from phosphorylation,J. Submicrosc. Cytol. 10 39–51.

    Google Scholar 

  • Reed, P. W., and Lardy, H. A. (1972). A23187: a divalent cation ionophore,J. Biol. Chem. 247 6970–6977.

    Google Scholar 

  • Rigoni, F., Mathien-Shire, Y., and Deana, R. (1980). Effect of Ruthenium Red on calcium efflux from rat liver mitochondria,FEBS Lett. 120 255–258.

    Google Scholar 

  • Roos, I., Crompton, M., and Carafoli, E. (1980). The role of inorganic phosphate in the release of Ca2+ from rat liver mitochondria,Eur. J. Biochem. 110 319–325.

    Google Scholar 

  • Rottemberg, H., and Solomon, K. (1969). The osmotic nature of the ion-induced swelling of rat liver mitochondria,Biochim. Biophys. Acta 193 48–57.

    Google Scholar 

  • Shuster, S. M., and Olson, M. S. (1973). Energy-dependent release of magnesium from beef heart submitochondrial particles,J. Biol. Chem. 248 8370–8377.

    Google Scholar 

  • Shuster, S. M., and Olson, M. S. (1974). Studies of the energy-dependent uptake of divalent metal ions by beef heart mitochondria,J. Biol. Chem. 249 7151–7158.

    Google Scholar 

  • Siliprandi, D., Toninello, A., Zoccarato, F., Rugolo, M., and Siliprandi, N. (1978). Efflux of magnesium and potassium ions from liver mitochondria induced by inorganic phosphate and by diamide,J. Bioenerg. Biomembr. 10 1–11.

    Google Scholar 

  • Stoner, C. D., and Sirak, H. D. (1978). Swelling and contraction of heart mitochondria suspended in ammonium phosphate.J. Bioenerg. Biomembr. 10 75–88.

    Google Scholar 

  • Veloso, D., Guynn, R. W., Oskarsson, M., and Veech, R. L. (1973). The concentration of free and bound magnesium in rat tissues,J. Biol. Chem. 248 4811–4819.

    Google Scholar 

  • Webster, K. A., and Bronk, J. R. (1978). Ion movements during energy-linked mitochondrial structural changes,J. Bioenerg. Biomembr. 10 23–44.

    Google Scholar 

  • Wherle, J. P., Jurkowitz, M., Scott, K. M., and Brierley, G. P. (1976). Mg2+ and the permeability of heart mitochondria to monovalent cations,Arch. Biochem. Biophys. 174 312–323.

    Google Scholar 

  • Zoccarato, F., and Nicholls, G. D. (1981). Phosphate-independent calcium efflux from liver mitochondria,FEBS Lett. 128 275–277.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masini, A., Ceccarelli-Stanzani, D. & Muscatello, U. The role of Mg2+ in the regulation of the structural and functional steady-states in rat liver mitochondria. J Bioenerg Biomembr 15, 217–234 (1983). https://doi.org/10.1007/BF00743942

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00743942

Key Words

Navigation