Combustion, Explosion and Shock Waves

, Volume 31, Issue 5, pp 624–626 | Cite as

Dynamic compaction of ultradisperse diamonds

  • E. E. Lin
  • S. A. Novikov
  • V. G. Kuropatkin
  • V. A. Medvedkin
  • V. I. Sukharenko
Short Communications

Abstract

It is established experimentally that when a powder consisting of ultradisperse diamonds is subjected loading by weak shock waves with a duration ∼10−5 sec, the mean size of the diamond particles increases by several orders of magnitude.

Keywords

Shock Wave Boron Nitride Shock Compression Diamond Particle United States Patent 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. M. Titov, V. F. Anisichkin, and I. Yu. Mal'kov, “Study of the synthesis of ultradisperse diamond in detonation waves,” Fiz. Goreniya Vzryva,25, No. 3, 117–126 (1989).Google Scholar
  2. 2.
    K. V. Volkov, V. V. Danilenko, and V. I. Elin, “Synthesis of diamond from carbon in the products of the detonation of an explosive,”Ibid.,26, No. 3, 123–125 (1990).Google Scholar
  3. 3.
    A. M. Staver and A. I. Lyamkin, “Production of ultradisperse diamonds using explosives,” Ultradisperse Materials. Production and Properties: Symposium (editor: A. M. Staver), Krasnoyarsk (1990), p. 3–22.Google Scholar
  4. 4.
    B. A. Byskubenko, V. V. Danilenko, E. E. Line, et al., “Effect of scale factors on the dimensions and yield of diamonds in detonation synthesis,” Fiz. Goreniya Vzryva,28, No. 2, 108–109 (1992).Google Scholar
  5. 5.
    V. G. Aleshin, A. A. Smekhnov, M. G. Chudinov, et al., “Effect of the chemical composition of the surface of microscopic powders of synthetic diamond on the properties of polycrystals sintered from them,” Sverkhtverdye Materialy, No. 1, 37–41 (1991).Google Scholar
  6. 6.
    A. Sawaoka and T. Akashi, “Dynamic compaction of diamond and cubic boron nitride utilizing exothermal chemical reaction,” Chemistry of Shock Waves: Proc. Int. Symp., Krasnoyarsk (1991).Google Scholar
  7. 7.
    S. S. Batsanov, V. A. Vazlyulin, L. I. Kopaneva, et al., “Dynamic compaction of diamond powder,” Fiz. Goreniya Vzryva,27, No. 4, 139 (1991).Google Scholar
  8. 8.
    Ya. E. Geguzin, Physics of Sintering [in Russian], Nauka, Moscow (1984).Google Scholar
  9. 9.
    E. E. Lin, “Aggregation of crystalline clusters in the front of shock waves in condensed matter,” Fiz. Khim.,12, No. 3, 299–302 (1993).Google Scholar
  10. 10.
    V. F. Anisichkin, “Phenomenon of the resonant solid-phase coalescence of small diamond particles in explosion products,” Fiz. Khim.,12, No. 5, 605–608 (1993).Google Scholar
  11. 11.
    L. D. Livshitz, Diamond: Encyclopedic Physical Dictionary [in Russian], Sov. Entsikl., Vol. 1 (1960), pp. 40–41.Google Scholar
  12. 12.
    D. R. Garrett, Method for Making Diamond. United States Patent Office 3.499.732. Patented March 10, 1970.Google Scholar
  13. 13.
    A. S. Balchan and G. R. Cowan, Method of Treating Solids with High-Dynamic Pressure. United States Patent Office 3.667.911. Patented June 6, 1972.Google Scholar
  14. 14.
    Japanese Patent Application No. 57-17841, MKI SO1 V 31/06. Method of Sintering Fine Diamond Granules. Izobret. Stran Mira,51, No. 11, 44 (1982).Google Scholar
  15. 15.
    I. Yu. Dolgova, V. D. Rogozin, S. P. Pisarev, and A. A. Aksenov, “Shock compression of powdered VTSP ceramic with preliminary heating,” Progressive Manufacturing Methods, Structure, and Properties of Powder Products, Composite Materials, and Coatings: Summary of Documents of an All-Republic Scientific-Technical Conference. Volgograd (1992), pp. 63–64.Google Scholar
  16. 16.
    L. D. Landau and E. M. Lifshitz, Statistical Physics [in Russian], Nauka, Moscow (1976), Chap. 1.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • E. E. Lin
  • S. A. Novikov
  • V. G. Kuropatkin
  • V. A. Medvedkin
  • V. I. Sukharenko

There are no affiliations available

Personalised recommendations