Skip to main content
Log in

Is there sufficient experimental evidence to consider the mitochondrial cytochromebc 1 complex a proton pump? Probably no.

  • Mini Review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The electron flow through the cytochromebc 1 complex of the mitochondrial respiratory chain is accompanied by vectorial proton translocation, though the mechanism of the latter phenomenon has not yet been clarified. Several proposed hypotheses are briefly presented and discussed here. Recently, a number of papers have appeared claiming the existence of a proton pump in the enzyme mainly on the basis of the interaction of the complex with N,N′-dicyclohexylcarbodiimide. These data are reviewed here with the aim of showing their ability to fit multiple interpretations. This together with some other arguments leads to the conclusion that a proton pump in the mitochondrialbc 1 complex has not yet been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azzi, A., and Nałęcz, M. J. (1984).Trends Biochem. Sci. 9, 513–514.

    Google Scholar 

  • Azzi, A., Casey, R. P., and Nałęcz, M. J. (1984).Biochim. Biophys. Acta 768, 209–226.

    Google Scholar 

  • Beattie, D. S., and Clejan, L. (1982).FEBS Lett. 149, 245–248.

    Google Scholar 

  • Beattie, D. S., and Villalobo, A. (1982).J. Biol. Chem. 257, 14745–14752.

    Google Scholar 

  • Beattie, D. S., Clejan, L., and Bosch, C. G. (1984).J. Biol. Chem. 259, 10426–10532.

    Google Scholar 

  • Beechey, R. B., Robertson, A. M., Holloway, C. T., and Knight, J. G. (1967).Biochemistry 6, 3867–3879.

    Google Scholar 

  • Bowyer, J. R., Edwards, C. A., Ohnishi, T., and Trumpower, B. L. (1982).J. Biol. Chem. 257, 8321–8330.

    Google Scholar 

  • Casey, R. P., Thelen, M., and Azzi, A. (1980).J. Biol. Chem. 255, 3994–4000.

    Google Scholar 

  • Clejan, L., and Beattie, D. S. (1983).J. Biol. Chem. 258, 14271–14275.

    Google Scholar 

  • Clejan, L., Bosch, C. G., and Beattie, D. S. (1984a).J. Biol. Chem. 259, 11169–11172.

    Google Scholar 

  • Clejan, L., Bosch, C. G., and Beattie, D. S. (1984b).J. Biol. Chem. 259, 13017–13020.

    Google Scholar 

  • Das Gupta, U., and Rieske, J. S. (1973).Biochem. Biophys. Res. Commun. 54, 1247–1254.

    Google Scholar 

  • Degli Esposti, M., Parenti-Castelli, G., and Lenaz, G. (1981).Ital. J. Biochem. 30, 453–463.

    Google Scholar 

  • Delgi Esposti, M., Saus, J. B., Timoneda, J., Bertoli, E., and Lenaz, G. (1982).FEBS Lett. 147, 101–105.

    Google Scholar 

  • Degli Esposti, M., Meier, E., Timoneda, J., and Lenaz, G. (1983).Biochim. Biophys. Acta 725, 349–360.

    Google Scholar 

  • De Vries, S., Albracht, S. P. J., and Leeuwerik, F. J. (1979).Biochim. Biophys. Acta 546, 316–333.

    Google Scholar 

  • De Vries, S., Albracht, S. P. J., Berden, J. A., Marres, C. A. M., and Slater, E. C. (1983).Biochim. Biophys. Acta 723, 91–103.

    Google Scholar 

  • Dutton, P. L., and Wilson, D. F. (1974).Biochim. Biophys. Acta 346, 165–212.

    Google Scholar 

  • Erecińska, M., and Wilson, D. F. (1976).Arch. Biochem. Biophys. 174, 143–157.

    Google Scholar 

  • Fillingame, R. H. (1980).Annu. Rev. Biochem. 49, 1079–1113.

    Google Scholar 

  • Gellerfors, P., and Nelson, B. D. (1977).Eur. J. Biochem. 80, 275–282.

    Google Scholar 

  • Hurt, E. C., and Hauska, G. (1982).J. Bioenerg. Biomembr. 14, 405–424.

    Google Scholar 

  • Krab, K., Soos, J., and Wikström, M. (1984).FEBS Lett. 178, 187–191.

    Google Scholar 

  • Ksenzenko, M., Konstantinov, A. A., Khomutov, G. B., Tikhonov, A. N., and Ruuge, E. K. (1983).FEBS Lett. 155, 19–24.

    Google Scholar 

  • Kurzer, F., and Duraghi-Zadeh, K. (1967).Chem. Rev. 67, 107–152.

    Google Scholar 

  • Leigh, J. S., and Erecińska, M. (1975).Biochim. Biophys. Acta 387, 95–106.

    Google Scholar 

  • Lenaz, G., Parenti-Castelli, G., and Degli-Esposti, M. (1982a). InTransport in Biomembranes: Model Systems and Reconstitution (Antolini, R., Gliozzi, A., and Gorio, A., eds.), Raven Press, New York, pp. 191–200.

    Google Scholar 

  • Lenaz, G., Degli Esposti, M., and Parenti-Castelli, G. (1982b).Biochem. Biophys. Res. Commun. 105, 589–595.

    Google Scholar 

  • Leung, K. H., and Hinkle, P. C. (1975).J. Biol. Chem. 250, 8467–8471.

    Google Scholar 

  • Lorusso, M., Gatti, D., Boffoli, D., Bellomo, E., and Papa, S. (1983).Eur. J. Biochem. 137, 413–420.

    Google Scholar 

  • Marres, C. A., and Slater, E. C. (1977).Biochim. Biophys. Acta 462, 531–548.

    Google Scholar 

  • Matsuura, K., O'Keefe, D. P., and Dutton, P. L. (1983).Biochim. Biophys. Acta 722, 12–22.

    Google Scholar 

  • Mitchell, P. (1961).Nature 191, 144–148

    Google Scholar 

  • Mitchell, P. (1975).FEBS Lett. 56, 1–6.

    Google Scholar 

  • Mitchell, P. (1976).J. Theor. Biol. 62, 327–367.

    Google Scholar 

  • Nałęcz, M. J., and Azzi, A. (1985).Arch. Biochem. Biophys. 240, 921–931.

    Google Scholar 

  • Nałęcz, M. J., Casey, R. P., and Azzi, A. (1983a).Biochimie 65, 513–518.

    Google Scholar 

  • Nałęcz, M. J., Casey, R. P., and Azzi, A. (1983b).Biochim. Biophys. Acta 724, 75–82.

    Google Scholar 

  • Nałęcz, M. J., Casey, R. P., and Azzi, A. (1985a). InMethods in Enzymology (Fleisher, S., ed.), Vol. 125, Chapter VII, Academic Press, New York, in press.

    Google Scholar 

  • Nałęcz, M. J., Bolli, R., and Azzi, A. (1985b).Arch. Biochem. Biophys. 236, 619–628.

    Google Scholar 

  • Nelson, B. D., and Gellerfors, P. (1976).Biochim. Biophys. Acta 357, 358–364.

    Google Scholar 

  • Papa, S. (1976).Biochim. Biophys. Acta 456, 39–84.

    Google Scholar 

  • Papa, S. (1981). InMembranes and Transport (Martonosi, A. M., ed.), Vol. 1, Plenum Press, New York and London, pp. 363–368.

    Google Scholar 

  • Papa, S. (1982).J. Bioenerg. Biomembr. 14, 69–86.

    Google Scholar 

  • Papa, S., Lorusso, M., Boffoli, D., and Bellomo, E. (1983).Eur. J. Biochem. 137, 405–412.

    Google Scholar 

  • Price, B. D., and Brand, M. D. (1982).Biochem. J. 206, 419–421.

    Google Scholar 

  • Price, B. D., and Brand, M. D. (1983).Eur. J. Biochem. 132, 595–601.

    Google Scholar 

  • Prince, R. C., and Dutton, P. L. (1976).FEBS Lett. 65, 117–119.

    Google Scholar 

  • Prochaska, L. J., Bisson, R., Capaldi, R. A., Steffens, G. C. M., and Buse, G. (1981).Biochim. Biophys. Acta. 637, 360–373.

    Google Scholar 

  • Rich, P. R. (1983).Biochim. Biophys. Acta 722, 271–280.

    Google Scholar 

  • Rich, P. R. (1984).Biochim. Biophys. Acta 768, 53–79.

    Google Scholar 

  • Rich, P. R. and Bendall, D. S. (1980).Biochim. Biophys. Acta 591, 153–161.

    Google Scholar 

  • Rieske, J. S. (1976).Biochim. Biophys. Acta 456, 195–247.

    Google Scholar 

  • Salerno, J. C. (1984).J. Biol. Chem. 259, 2331–2336.

    Google Scholar 

  • Slater, E. C. (1981). InChemiosmotic Proton Circuits in Biological Membranes (Skulachev, V. P., and Hinkle, P. C., eds.), Addison-Wesley, Reading, Massachusetts, pp. 69–104.

    Google Scholar 

  • Slater, E. C. (1983).Trends Biochem. Sci. 8, 239–242.

    Google Scholar 

  • Smith, R. J., and Capaldi, R. A. (1977).Biochemistry 16, 2629–2633.

    Google Scholar 

  • Solioz, M. (1984).Trends Biochem. Sci. 9, 309–312.

    Google Scholar 

  • Trumpower, B. L. (1981a).Biochem. Biophys. Acta 639, 129–155.

    Google Scholar 

  • Trumpower, B. L. (1981b).J. Bioenerg. Biomembr. 13, 1–24.

    Google Scholar 

  • T'sai, A.-L., and Palmer, G. (1983).Biochim. Biophys. Acta 722, 349–363.

    Google Scholar 

  • Von Jagow, G., and Engel, W. D. (1980).FEBS Lett. 111, 1–5.

    Google Scholar 

  • Von Jagow, G., and Engel, W. D. (1981).FEBS Lett. 136, 19–24.

    Google Scholar 

  • Von Jagow, G., Ljungdahl, P. O., Ohnishi, T., and Trumpower, B. L. (1984).J. Biol. Chem. 259, 6318–6326.

    Google Scholar 

  • Wikström, M., and Berden, J. A. (1972).Biochim. Biophys. Acta 283, 403–420.

    Google Scholar 

  • Wikström, M., and Krab, K. (1980).Curr. Top. Bioenerg. 10, 51–101.

    Google Scholar 

  • Wikström, M., Krab, K., and Saraste, M. (1981).Annu. Rev. Biochem. 50, 623–655.

    Google Scholar 

  • Yu, C. A., Yu, L., and King, T. E. (1972).J. Biol. Chem. 247, 1012–1019.

    Google Scholar 

  • Yu, C. A., Yu, L., and King, T. E. (1979).Arch. Biochem. Biophys. 198, 314–322.

    Google Scholar 

  • Yu, C. A., Nagoaka, S., Yu, L., and King, T. E. (1980).Arch. Biochem. Biophys. 204, 59–70.

    Google Scholar 

  • Zhu, Q. S., Berden, J. A., De Vries, S., and Slater, E. C. (1982a).Biochim. Biophys. Acta 680, 69–79.

    Google Scholar 

  • Zhu, Q. S., Berden, J. A., De Vries, S., Folkers, K., Porter, T., and Slater, E. C. (1982b).Biochim. Biophys. Acta 682, 160–167.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is dedicated to the memory of my friend and long-time close collaborator Dr. Robert P. Casey who has passed away after a short, tragic illness at the age of 34.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nałęcz, M.J. Is there sufficient experimental evidence to consider the mitochondrial cytochromebc 1 complex a proton pump? Probably no.. J Bioenerg Biomembr 18, 21–38 (1986). https://doi.org/10.1007/BF00743610

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00743610

Key Words

Navigation