Journal of Bioenergetics and Biomembranes

, Volume 15, Issue 1, pp 13–25 | Cite as

Action of mercurials on the active and passive transport properties of sarcoplasmic reticulum

  • Vincent C. K. Chiu
  • Donald Mouring
  • Duncan H. Haynes
Research Articles

Abstract

The effect of Hg2+ and Ch3-Hg+ on the passive and active transport properties of the Ca2+-Mg2+-ATPase-rich fraction of skeletal sarcoplasmic reticulum (SR) is reported. The agents abolish active transport, at 10−5 and 10−4M concentrations, respectively. Addition of the mercurials was also shown to release actively accumulated Ca2+. The mercurials increase the passive Ca2+ and Mg2+ permeability in the absence of ATP at the same concentrations at which they inhibit transport. It is proposed that both effects are the result of direct binding of the mercurials to the SH groups of the Ca2+-Mg2+-ATPase pump, altering the conformational equilibria of the pump. The agents were also shown to increase the passive KCl permeability. The SR preparation consists of two vesicle populations with respect to K+ permeability, one with rapid KCl equilibration faciliated by a monovalent cation channel function and one with slow KCl equilibration. The mercurials increase the rates of KCl equilibration in both fractions, but produce higher rates in the fraction containing the channel function. The results are discussed in terms of pump and channel function and are compared with results for the electrical behavior of the Ca2+-Mg2+-ATPase and other SR proteins in black lipid membranes, as presented by others.

Key Words

Sarcoplasmic reticulum Ca2+ transport K+ permeability mercurials Ca2+-Mg2+-ATPase fluorescent probe 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Caswell, A. H. (1972).J. Membr. Biol. 7 345–364.Google Scholar
  2. Caswell, A. H. and Hutchison, J. D. (1971).Biochem. Biophys. Res. Commun. 42 43–49.Google Scholar
  3. Chiu, V. C. K., and Haynes, D. H. (1980a).J. Membr. Biol.,56 203–218.Google Scholar
  4. Chiu, V. C. K., and Haynes, D. H. (1980b).J. Membr. Biol.,56 219–239.Google Scholar
  5. Chiu, V. C. K., Mouring, D., Watson, B. D., and Haynes, D. H. (1980).J. Membr. Biol. 56 121–132.Google Scholar
  6. Coan, C. R., and Inesi, G. (1977).J. Biol. Chem. 252 3044–3049.Google Scholar
  7. Coan, C. R., Verjovski-Almeida, S., and Inesi, G. (1979).J. Biol. Chem. 254 2968–2974.Google Scholar
  8. Dixon, D., Corbett, A., and Haynes, D. H. (1982).J. Bioenerg. Biomembr. 14 87–96.Google Scholar
  9. Froehlich, J. P., and Taylor, E. W. (1975).J. Biol. Chem. 250 2013–2021.Google Scholar
  10. Froehlich, J. P., and Taylor, E. W. (1976).J. Biol. Chem. 251 2307–2315.Google Scholar
  11. Hasselbach, W. (1978).Biochim. Biophys. Acta 463 23–53.Google Scholar
  12. Hasselbach, W., and Makinose, M. (1963).Biochem. Z. 339 94–111.Google Scholar
  13. Hasselbach, W., and Seraydarian, K. (1966).Biochem. Z. 345 159–172.Google Scholar
  14. Haynes, D. H. (1982).Arch. Biochem. Biophys. 215 444–461.Google Scholar
  15. Inesi, G. (1979). In:Membrane Transport in Biology. Vol. II.Transport across Single Biological Membrane (Biebisch, G., Tusteson, D. C., and Ussing, A. A., eds.). Springer Verlag, Berlin, pp. 357–393.Google Scholar
  16. Inesi, G., Croan, C., Verjovski-Almeida, S., Kurzmack, M., and Lewis, D. E. (1978a). In:Frontiers of Biological Energetics, Vol II, (Dutton, L., Lee, J., and Scarpa, A., eds.), Academic Press, New York, p. 1212.Google Scholar
  17. Inesi, G., Kurzmack, M., and Verjovski-Almeida, S. (1978b).Ann. N.Y. Acad. Sci. 307 224–227.Google Scholar
  18. Inesi, G., and Scarpa, A. (1972).Biochem. 11 356–359.Google Scholar
  19. Jilka, R. L., Martonosi, A. N., and Tillack, T. W. (1975).J. Biol. Chem. 250 7511–7524.Google Scholar
  20. Kometani, T., and Kasai, M. (1978).J. Membr. Biol. 41 295–308.Google Scholar
  21. MacLennan, D. H. (1970).J. Biol. Chem. 245 4508–4518.Google Scholar
  22. MacLennan, D. H., and Holland, P. C. (1975).Annu. Rev. Biophys. Eng. 4 377–404.Google Scholar
  23. McKinley, D., and Meissner, G. (1977).FEBS Lett. 82 47–50.Google Scholar
  24. McKinley, D., and Meissner, G. (1978).J. Membr. Biol. 44 159–186.Google Scholar
  25. Meissner, G. (1975).Biochim. Biophys. Acta 389 51–68.Google Scholar
  26. Miller, C., and Rosenberg, R. L. (1979).Biochemistry 18 1138–1145.Google Scholar
  27. Millman, M. S., Caswell, A. H., and Haynes, D. H. (1980).Membr. Biochem. 3 129–313.Google Scholar
  28. Murphy, A. J. (1978).J. Biol. Chem. 253 385–389.Google Scholar
  29. Noack, E., Kurzmack, M., Verjovski-Almeida, S., and Inesi, G. (1978).J. Pharmacol. Exp. Ther. 206 281–288.Google Scholar
  30. Shamoo, A. E., and MacLennan, D. H. (1974).Proc. Natl. Acad. Sci. USA 71 3522–3526.Google Scholar
  31. Shamoo, A. E., and MacLennan, D. H. (1975).J. Membr. Biol. 25 65–74.Google Scholar
  32. Weber, A., Herz, R. and Reiss, I. (1966).Biochem. Z. 345 329–369.Google Scholar
  33. Yamada, S., and Ikemoto, N. (1978).J. Biol. Chem. 253 6801–6807.Google Scholar
  34. Yoshida, H., and Tonomura, Y. (1976).J. Biochem. (Tokyo) 79 649–654.Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • Vincent C. K. Chiu
    • 1
  • Donald Mouring
    • 1
  • Duncan H. Haynes
    • 1
  1. 1.Department of PharmacologyUniversity of Miami Medical SchoolMiami

Personalised recommendations