Advertisement

Journal of Bioenergetics and Biomembranes

, Volume 16, Issue 5–6, pp 583–595 | Cite as

Properties of a transplasma membrane electron transport system in HeLa cells

  • Iris L. Sun
  • F. L. Crane
  • C. Grebing
  • H. Löw
Research Articles

Abstract

A transmembrane electron transport system has been studied in HeLa cells using an external impermeable oxidant, ferricyanide. Reduction of ferricyanide by HeLa cells shows biphasic kinetics with a rate up to 500 nmoles/min/g w.w. (wet weight) for the fast phase and half of this rate for the slow phase. The apparentK m is 0.125 mM for the fast rate and 0.24 mM for the slow rate. The rate of reduction is proportional to cell concentration. Inhibition of the rate by glycolysis inhibitors indicates the reduction is dependent on glycolysis, which contributes the cytoplasmic electron donor NADH. Ferricyanide reduction is shown to take place on the outside of cells for it is affected by external pH and agents which react with the external surface. Ferricyanide reduction is accompanied by proton release from the cells. For each mole of ferricyanide reduced, 2.3 moles of protons are released. It is, therefore, concluded that a transmembrane redox system in HeLa cells is coupled to proton gradient generation across the membrane. We propose that this redox system may be an energy source for control of membrane function in HeLa cells. The promotion of cell growth by ferricyanide (0.33–0.1 mM), which can partially replace serum as a growth factor, strongly supports this hypothesis.

Key Words

Plasma membrane electron transport proton excretion growth factors ferricyanide reduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berg, H. C. (1969).Biochim. Biophys. Acta 183 65–78.Google Scholar
  2. Bienfait, H. F., Duivenvoorden, J., and Verkerke, W. (1982).J. Plant Nutr. 5 451–456.Google Scholar
  3. Christensen, H. N. (1979).Advances in Enzymology and Related Areas of Molecular Biology (Meister, A., ed.) Vol. 49, Wiley, New York, pp. 41–101.Google Scholar
  4. Clark, M. G., Partick, E. J., Patten, G. S., Crane, F. L., Löw, H. and Grebing, C. (1981).Biochem. J. 200 565–572.Google Scholar
  5. Clark, M. G., Partick, E. J., and Crane, F. L. (1982).Biochem. J. 204 795–801.Google Scholar
  6. Craig, T. A., and Crane, F. L. (1981).Proce. Indiana Acad. Sci. 90 150–155.Google Scholar
  7. Crane, F. L., Goldenberg, H., Morre, D. J., and Löw, H. (1979).Subcellular Biochemistry (Roodyn, D. B., ed), Vol. 6, Plenum Press, New York, pp. 345–399.Google Scholar
  8. Crane, F. L., Roberts, H., Linnane, A. W., and Löw, H. (1982a).J. Bioenerg. Biomembr. 14 191–205.Google Scholar
  9. Crane, F. L., Crane, H. E., Sun, I. L., MacKellar, W. C., Grebing, C., and Löw, H. (1982b).J. Bioenerg. Biomembr. 14 425–433.Google Scholar
  10. Crane, F. L., Sun, I. L., Löw, H., and Clark, M. G. (1983a).Hoppe-Seylers Z. Physiol. Chem. 354 1112.Google Scholar
  11. Crane, F. L., Craig, T. A., Misra, P. C., and Barr, R. (1983b).Proc. Plant Growth Regul. Soc. Am. 10 70–74.Google Scholar
  12. Dormandy, T. L., and Zarday, Z. (1965).J. Physiol. 180 684–707.Google Scholar
  13. Ellem, K. A. O., and Kay, G. F. (1983).Biochem. Biophys. Res. Commun. 112 183–190.Google Scholar
  14. Gerson, D. F., Kiefer, H., and Eufe, W. (1982).Science 216 1009–1010.Google Scholar
  15. Goldenberg, H. (1982).Biochim. Biophys. Acta 694 203–223.Google Scholar
  16. Goldenberg, H., Crane, F. L., and Morré, D. J. (1979).J. Biol. Chem. 254 2491–2498.Google Scholar
  17. Hutchings, S. E., and Sato, G. H. (1978).Proc. Natl. Acad. Sci. USA 75 901–904.Google Scholar
  18. Löw, H., and Werner, S. (1976).FEBS Lett. 65 96–98.Google Scholar
  19. Löw, H., Crane, F. L., Grebing, C., Hall, K., and Tally, M. (1979). InDiabetes (Waldhäusl, W. K., ed.), Excerpta Media, Amsterdam, pp. 209–213.Google Scholar
  20. Löw, H., Grebing, C., and Crane, F. L. (1982). Abstr. 12th Intern. Biochem. Congr. Perth, p. 138.Google Scholar
  21. Manyai, S., and Szekely, M. (1954).Acta Physiol. Acad. Sci. Hung. 5 7–18.Google Scholar
  22. Martonosi, A. (1982), ed.,Membranes and Transport Plenum Press, New York, vols. 1 and 2.Google Scholar
  23. Mishell, B. B., and Shrigi, S. M. (1980), eds.,Selected Methods in Cellular Immunology W. H. Freeman, San Francisco, pp. 17–18.Google Scholar
  24. Mishra, R. K., and Passow, H. (1969).J. Membr. Biol. 1 214–224.Google Scholar
  25. Passow, H. (1963).Cell Interface Reaction (Brown, H. D., ed.) Scholars Library, New York pp. 57–67.Google Scholar
  26. Romheld, V., and Marschner, H. (1983).Plant Physiol. 71 949–954.Google Scholar
  27. Sun, I. L., Crane, F. L., Chou, J. Y., Löw, H., and Grebing, C. (1983).Biochem. Biophys. Res. Commun. 116 210–216.Google Scholar
  28. Tökes, Z. A., Rogers, K. E., and Rembaum, A. (1982).Proc. Natl. Acad. Sci. USA 79 2026–2030.Google Scholar
  29. Tritton, T. R., and Yee, G. (1982).Science 217 248–250.Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • Iris L. Sun
    • 1
  • F. L. Crane
    • 1
  • C. Grebing
    • 2
  • H. Löw
    • 2
  1. 1.Department of BiologyPurdue UniversityWest Lafayette
  2. 2.Department of EndocrinologyKarolinska InstituteStockholmSweden

Personalised recommendations