Skip to main content
Log in

Properties of a transplasma membrane electron transport system in HeLa cells

  • Research Articles
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

A transmembrane electron transport system has been studied in HeLa cells using an external impermeable oxidant, ferricyanide. Reduction of ferricyanide by HeLa cells shows biphasic kinetics with a rate up to 500 nmoles/min/g w.w. (wet weight) for the fast phase and half of this rate for the slow phase. The apparentK m is 0.125 mM for the fast rate and 0.24 mM for the slow rate. The rate of reduction is proportional to cell concentration. Inhibition of the rate by glycolysis inhibitors indicates the reduction is dependent on glycolysis, which contributes the cytoplasmic electron donor NADH. Ferricyanide reduction is shown to take place on the outside of cells for it is affected by external pH and agents which react with the external surface. Ferricyanide reduction is accompanied by proton release from the cells. For each mole of ferricyanide reduced, 2.3 moles of protons are released. It is, therefore, concluded that a transmembrane redox system in HeLa cells is coupled to proton gradient generation across the membrane. We propose that this redox system may be an energy source for control of membrane function in HeLa cells. The promotion of cell growth by ferricyanide (0.33–0.1 mM), which can partially replace serum as a growth factor, strongly supports this hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berg, H. C. (1969).Biochim. Biophys. Acta 183 65–78.

    Google Scholar 

  • Bienfait, H. F., Duivenvoorden, J., and Verkerke, W. (1982).J. Plant Nutr. 5 451–456.

    Google Scholar 

  • Christensen, H. N. (1979).Advances in Enzymology and Related Areas of Molecular Biology (Meister, A., ed.) Vol. 49, Wiley, New York, pp. 41–101.

    Google Scholar 

  • Clark, M. G., Partick, E. J., Patten, G. S., Crane, F. L., Löw, H. and Grebing, C. (1981).Biochem. J. 200 565–572.

    Google Scholar 

  • Clark, M. G., Partick, E. J., and Crane, F. L. (1982).Biochem. J. 204 795–801.

    Google Scholar 

  • Craig, T. A., and Crane, F. L. (1981).Proce. Indiana Acad. Sci. 90 150–155.

    Google Scholar 

  • Crane, F. L., Goldenberg, H., Morre, D. J., and Löw, H. (1979).Subcellular Biochemistry (Roodyn, D. B., ed), Vol. 6, Plenum Press, New York, pp. 345–399.

    Google Scholar 

  • Crane, F. L., Roberts, H., Linnane, A. W., and Löw, H. (1982a).J. Bioenerg. Biomembr. 14 191–205.

    Google Scholar 

  • Crane, F. L., Crane, H. E., Sun, I. L., MacKellar, W. C., Grebing, C., and Löw, H. (1982b).J. Bioenerg. Biomembr. 14 425–433.

    Google Scholar 

  • Crane, F. L., Sun, I. L., Löw, H., and Clark, M. G. (1983a).Hoppe-Seylers Z. Physiol. Chem. 354 1112.

    Google Scholar 

  • Crane, F. L., Craig, T. A., Misra, P. C., and Barr, R. (1983b).Proc. Plant Growth Regul. Soc. Am. 10 70–74.

    Google Scholar 

  • Dormandy, T. L., and Zarday, Z. (1965).J. Physiol. 180 684–707.

    Google Scholar 

  • Ellem, K. A. O., and Kay, G. F. (1983).Biochem. Biophys. Res. Commun. 112 183–190.

    Google Scholar 

  • Gerson, D. F., Kiefer, H., and Eufe, W. (1982).Science 216 1009–1010.

    Google Scholar 

  • Goldenberg, H. (1982).Biochim. Biophys. Acta 694 203–223.

    Google Scholar 

  • Goldenberg, H., Crane, F. L., and Morré, D. J. (1979).J. Biol. Chem. 254 2491–2498.

    Google Scholar 

  • Hutchings, S. E., and Sato, G. H. (1978).Proc. Natl. Acad. Sci. USA 75 901–904.

    Google Scholar 

  • Löw, H., and Werner, S. (1976).FEBS Lett. 65 96–98.

    Google Scholar 

  • Löw, H., Crane, F. L., Grebing, C., Hall, K., and Tally, M. (1979). InDiabetes (Waldhäusl, W. K., ed.), Excerpta Media, Amsterdam, pp. 209–213.

    Google Scholar 

  • Löw, H., Grebing, C., and Crane, F. L. (1982). Abstr. 12th Intern. Biochem. Congr. Perth, p. 138.

  • Manyai, S., and Szekely, M. (1954).Acta Physiol. Acad. Sci. Hung. 5 7–18.

    Google Scholar 

  • Martonosi, A. (1982), ed.,Membranes and Transport Plenum Press, New York, vols. 1 and 2.

    Google Scholar 

  • Mishell, B. B., and Shrigi, S. M. (1980), eds.,Selected Methods in Cellular Immunology W. H. Freeman, San Francisco, pp. 17–18.

    Google Scholar 

  • Mishra, R. K., and Passow, H. (1969).J. Membr. Biol. 1 214–224.

    Google Scholar 

  • Passow, H. (1963).Cell Interface Reaction (Brown, H. D., ed.) Scholars Library, New York pp. 57–67.

    Google Scholar 

  • Romheld, V., and Marschner, H. (1983).Plant Physiol. 71 949–954.

    Google Scholar 

  • Sun, I. L., Crane, F. L., Chou, J. Y., Löw, H., and Grebing, C. (1983).Biochem. Biophys. Res. Commun. 116 210–216.

    Google Scholar 

  • Tökes, Z. A., Rogers, K. E., and Rembaum, A. (1982).Proc. Natl. Acad. Sci. USA 79 2026–2030.

    Google Scholar 

  • Tritton, T. R., and Yee, G. (1982).Science 217 248–250.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, I.L., Crane, F.L., Grebing, C. et al. Properties of a transplasma membrane electron transport system in HeLa cells. J Bioenerg Biomembr 16, 583–595 (1984). https://doi.org/10.1007/BF00743247

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00743247

Key Words

Navigation