Skip to main content
Log in

Oxidation-reduction midpoint potentials of mitochondrial flavoproteins and their intramitochondrial localization

  • Research Articles
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Spectrophotometric and fluorimetric substrate couple titrations and potentiometric spectrophotometric titrations were used to determine the oxidation-reduction potentials of components showing absorbance or fluorescence at the wavelengths attributable to the flavoproteins of mitochondria fractionated using digitonin together with sonication. A pure mitoplast fraction devoid of cytochrome b5 contamination could be obtained using 230 µg digitonin/mg of mitochondrial protein. The digitonin-soluble fraction contained a species havingE m 7 .4=−123 mV and probably represents the outer membrane flavoproteins. The inner membrane-matrix fraction, treated with ultrasound, provided evidence of a flavoprotein species with low redox potential (E m 7 .4=−302 mV) in the matrix fraction. The −302 mV component is probably lipoamide dehydrogenase. A high redox potential species withE m 7 .4=+19 mV in titrations with the succinate fumarate couple was located in the inner membrane vesicles and is probably identical with succinate dehydrogenase. The electron-transferring flavoprotein (ETF) was isolated from bovine heart mitochondria and itsE m 7 .4=−74 mV determined. The component in the matrix fraction with an apparentE m 7 .4=−56 mV probably represents ETF, and that in the inner membrane fraction with an apparentE m 7 .4=−43 mV the NADH dehydrogenase flavoprotein. A component in an apparently low concentration withE m 7 .4=+30 mV was detected in the inner membrane fraction. This probably represents the ETF-dehydrogenase flavoprotein. The origin of the flavoprotein fluorescence of mitochondria and intact tissues is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. E. Hassinen and K. Hiltunen,Biochim. Biophys. Acta,408 (1975) 319.

    Google Scholar 

  2. B. Chance, L. Ernster, P. B. Garland, C.-P. Lee, P. A. Light, T. Ohnishi, C. I. Ragan, and D. Wong,Proc. Nat. Acad. Sci. U.S.A.,57 (1967) 1498.

    Google Scholar 

  3. I. Hassinen and B. Chance,Biochem. Biophys. Res. Commun.,31 (1968) 895.

    Google Scholar 

  4. C. I. Ragan and P. B. Garland,Eur. J. Biochem.,10 (1969) 399.

    Google Scholar 

  5. M. Erecinska, D. F. Wilson, Y. Mukai, and B. Chance,Biochem. Biophys. Res. Commun.,41 (1970) 386.

    Google Scholar 

  6. T. Ohnishi,Biochim. Biophys. Acta,301 (1973) 105.

    Google Scholar 

  7. P. L. Dutton and D. F. Wilson,Biochim. Biophys. Acta,346 (1974) 165.

    Google Scholar 

  8. O. H. Lowry, G. J. Rosebrough, A. L. Farr, and R. J. Randall,J. Biol. Chem.,193 (1951) 265.

    Google Scholar 

  9. K. F. Tipton,Biochim. Biophys. Acta,135 (1967) 910.

    Google Scholar 

  10. W. C. Schneider,J. Biol. Chem.,176 (1948) 259.

    Google Scholar 

  11. T. L. Chan, J. W. Greenawalt, and P. L. Pedersen,J. Cell Biol.,45 (1970) 291.

    Google Scholar 

  12. H. Löw and I. Vallin,Biochim. Biophys. Acta.,69 (1963) 361.

    Google Scholar 

  13. C. L. Hall, L. Heijkensköld, T. Bartfai, L. Ernster, and H. Kamin,Arch. Biochem. Biophys.,177 (1976) 402.

    Google Scholar 

  14. C. L. Hall and H. Kamin,J. Biol. Chem.,250 (1975) 3476.

    Google Scholar 

  15. H. A. Krebs, J. Mellanby, and D. H. Williamson,Biochem. J.,82 (1962) 96.

    Google Scholar 

  16. D. H. Williamson, P. Lund, and H. A. Krebs,Biochem. J.,103 (1967) 514.

    Google Scholar 

  17. H. Borsook and H. F. Schott,J. Biol. Chem.,92 (1931) 535.

    Google Scholar 

  18. D. W. Allman, L. Galzigna, R. E. McCaman, and D. E. Green,Arch. Biochem. Biophys.,117 (1966) 413.

    Google Scholar 

  19. E. Bachmann, D. W. Allman, and D. E. Green,Arch. Biochem. Biophys. 115 (1966) 153.

    Google Scholar 

  20. D. E. Green, E. Bachmann, D. W. Allmann, and J. F. Perdue,Arch. Biochem. Biophys.,115 (1966) 172.

    Google Scholar 

  21. D. F. Parsons, G. R. Williams, and B. Chance,Ann. N.Y. Acad. Sci.,137 (1966) 643.

    Google Scholar 

  22. G. L. Sottocasa, B. Kuylenstierna, L. Ernster, and A. Bergstrand, inMethods in Enzymology, R. W. Estabrook and M. E. Pullman (eds.), Academic Press, New York, 1967, Vol. 10, p. 448.

    Google Scholar 

  23. C. Schnaitman, V. G. Erwin, and J. W. Greenawalt,J. Cell Biol.,32 (1967) 719.

    Google Scholar 

  24. C. Schnaitman and J. W. Greenawalt,J. Cell Biol.,38 (1968) 159.

    Google Scholar 

  25. C. Hoppel and C. Cooper,Biochem. J.,107 (1968) 367.

    Google Scholar 

  26. M. Lévy, R. Toury, and J. Andre,Biochim. Biophys. Acta.,135 (1969) 599.

    Google Scholar 

  27. J. W. Greenawalt and C. Schnaitman,J. Cell Biol.,46 (1970) 173.

    Google Scholar 

  28. W. J. Frisell, M. V. Patwardhan, and S. G. Mackenzie,J. Biol. Chem.,240 (1965) 1829.

    Google Scholar 

  29. L. Ernster, L. Danielson, and M. Ljunggren,Biochim. Biophys. Acta.,58 (1962) 171.

    Google Scholar 

  30. P. B. Garland, B. Chance, L. Ernster, C.-P. Lee, and D. Wong,Proc. Natl. Acad. Sci. U.S.A.,58 (1967) 1696.

    Google Scholar 

  31. G. Palmer and V. Massey, inBiological Oxidations, T. E. Singer (ed.), 1968, Interscience, New York, pp. 263–300.

    Google Scholar 

  32. J. G. Hauge,J. Am. Chem. Soc.,78 (1956) 5266.

    Google Scholar 

  33. F. J. Ruzicka and H. Beinert,Biochem. Biophys. Res. Commun.,66 (1975) 622.

    Google Scholar 

  34. E. B. Kearney,J. Biol. Chem.,235 (1960) 865.

    Google Scholar 

  35. T. Ohnishi, D. B. Winter, J. Lim, and T. E. King,Biochem. Biophys. Res. Commun.,53 (1973) 231.

    Google Scholar 

  36. T. Bücher and M. Klingenberg,Angew. Chemie.,70 (1958) 552.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voltti, H., Hassinen, I.E. Oxidation-reduction midpoint potentials of mitochondrial flavoproteins and their intramitochondrial localization. J Bioenerg Biomembr 10, 45–58 (1978). https://doi.org/10.1007/BF00743226

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00743226

Keywords

Navigation