Skip to main content
Log in

Evidence for the presence and role of tightly bound adenine nucleotides in phospholipid-free purifiedMicrococcus lysodeikticus adenosine triphosphatase

  • Research Articles
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

[32P]-labeled ATPase was isolated in a highly purified state fromMicrococcus lysodeikticus strain PNB grown in medium supplemented with [32P]orthophosphate. Selective extraction procedures allowed us to determine that at least 25% of the firmly bound label belonged to adenine nucleotides, ATP and ADP being present in equimolar amounts. However, no32P label was found to be part of phospholipids. This was confirmed by purification of the ATPase from cells fed with [2—3H]glycerol. Using the luciferin-luciferase assay we estimated that ATPase freshly isolated by Sephadex chromatography (specific activity 10–14 µmole substrate transformed · min−1 · mg protein−1) contained 2 moles ATP/mole of enzyme. The ratio fell with the age of enzyme and its purification by gel electrophoresis and this was paralleled by a loss of ATPase activity. The endogenous nucleotides were readily exchanged by added ADP or ATP. This result suggests that the sites for tight binding of adenine nucleotides are equivalent, although ADP seems to have a higher affinity for them. The last properties represent a peculiar characteristic of this bacterial ATPase as compared with other bacterial and organelle energy-transducing proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Abrams and J. B. Smith, in:The Enzymes P. D. Boyer, ed., Academic Press, New York (1974) Vol. X, p. 395.

    Google Scholar 

  2. J. M. Andreu, J. A. Albendea, and E. Muñoz,Eur. J. Biochem. 37 (1973) 505–515.

    Google Scholar 

  3. P. L. Pedersen, t2J. Bioenergetics,6 (1975) 243–275.

    Google Scholar 

  4. H. S. Penefsky, in:The Enzymes P. D. Boyer, ed., Academic Press, New York (1974) Vol. X, pp. 375–394.

    Google Scholar 

  5. A. Abrams, E. A. Nolan, C. Jensen, and J. B. Smith,Biochem. Biophys. Res. Commun. 55 (1973) 22–29.

    Google Scholar 

  6. A. Abrams, C. Jensen, and D. Morris,J. Supramol. Struct. 3 (1975) 261–274.

    Google Scholar 

  7. N. E. Garrett and H. S. Penefsky,J. Biol. Chem. 250 (1975) 6640–6647.

    Google Scholar 

  8. D. A. Harris, J. Rosing, R. J. van de Stadt, and E. C. Slater,Biochim. Biophys. Acta 314 (1973) 149–153.

    Google Scholar 

  9. H. W. Peter and J. Ahlers,Arch. Biochem. Biophys 170 (1975) 169–178.

    Google Scholar 

  10. J. M. Andreu, J. Carreira, and E. Muñoz,FEBS Lett. 65 (1976) 198–203.

    Google Scholar 

  11. W. R. Redwood, H. Müldner, and T. E. Thompson,Proc. Natl. Acad. Sci. U.S.A. 64 (1969) 989–996.

    Google Scholar 

  12. J. Ayala, M. Nieto, J. Carreira, and E. Muñoz,Eur. J. Biochem. 66 (1976) 43–47.

    Google Scholar 

  13. E. Muñoz, M. R. J. Salton, M. H. Ng, and M. T. Schor,Eur. J. Biochem. 7 (1967) 490–501.

    Google Scholar 

  14. H. Roy and E. N. Moudrianakis,Proc. Natl. Acad. Sci. U.S.A. 68 (1971) 464–468.

    Google Scholar 

  15. J. Rosing, D. A. Harris, A. Kemp, Jr., and E. C. Slater,Biochim. Biophys. Acta 376 (1975) 13–26.

    Google Scholar 

  16. J. Rosing, D. A. Harris, E. C. Slater, and A. Kemp, Jr.,J. Supramol. Struct. 3 (1975) 284–296.

    Google Scholar 

  17. P. D. Boyer,FEBS Lett. 58 (1975) 1–6.

    Google Scholar 

  18. P. D. Boyer, R. L. Cross, and W. Momsen,Proc. Natl. Acad. Sci. U.S.A. 70 (1973) 2873–2839.

    Google Scholar 

  19. R. L. Cross and P. D. Boyer,Biochemistry 14 (1975) 392–398.

    Google Scholar 

  20. A. Abrams and E. A. Nolan,Biochem. Biophys. Res. Commun. 48 (1972) 982–989.

    Google Scholar 

  21. M. Maeda, H. Kobayashi, M. Futai, and Y. Anraku,Biochem. Biophys. Res. Commun. 70 (1976) 228–234.

    Google Scholar 

  22. D. A. Harris, P. John, and G. K. Radda,Biochim. Biophys. Acta 459 (1977) 546–559.

    Google Scholar 

  23. S.-H. Lee, V. K. Kabra, C. J. Ritz, and A. F. Brodie,J. Biol. Chem. 252 (1977) 1084–1091.

    Google Scholar 

  24. J. Carreira, J. M. Andreu, M. Nieto, and E. Muñoz,Mol. Cell Biochem. 10 (1976) 67–76.

    Google Scholar 

  25. E. Muñoz, M. S. Nachbar, M. T. Schor, and M. R. J. Salton,Biochem. Biophys. Res. Commun. 32 (1968) 539–546.

    Google Scholar 

  26. J. Carreira, E. Muñoz, J. M. Andreu, and M. Nieto,Biochim. Biophys. Acta 436 (1976) 183–189.

    Google Scholar 

  27. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall,J. Biol. Chem. 193 (1951) 256–275.

    Google Scholar 

  28. G. B. Ansell and J. N. Hawthorne,Phospholipids, Chemistry, Metabolism and Function. Elsevier, Amsterdam (1964).

    Google Scholar 

  29. N. Shaw,Biochim. Biophys. Acta 164 (1968) 436–438.

    Google Scholar 

  30. G. A. Bray,Anal. Biochem. 1 (1960) 279–285.

    Google Scholar 

  31. T. R. Sato, J. F. Thompson, and W. F. Danforth,Anal. Biochem. 5 (1963) 542–547.

    Google Scholar 

  32. G. Fairbanks, T. L. Steck, and D. F. H. Wallach,Biochemistry 10 (1971) 2606–2617.

    Google Scholar 

  33. B. L. Streler, in:Methods of Enzymatic Analysis H. U. Bergmeyer, ed. Verlag Chemie, Weinheim, Academic Press, New York (1974) Vol. 4, pp. 2112–2116.

    Google Scholar 

  34. M. R. J. Salton and M. D. Schmitt,Biochem. Biophys. Res. Commun. 27 (1967) 529–534.

    Google Scholar 

  35. J. Carreira, J. M. Andreu, and E. Muñoz,Biochim. Biophys. Acta 492 (1977) 387–398.

    Google Scholar 

  36. J. Ayala, J. Carreira, M. Nieto, and E. Muñoz,Mol. Cell Biochem. 17 (1977) 17–23.

    Google Scholar 

  37. R. M. Leimgruber and A. E. Senior,J. Biol Chem. 251 (1976) 7103–7109.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muñoz, C., Palacios, P. & Muñoz, E. Evidence for the presence and role of tightly bound adenine nucleotides in phospholipid-free purifiedMicrococcus lysodeikticus adenosine triphosphatase. J Bioenerg Biomembr 9, 303–320 (1977). https://doi.org/10.1007/BF00743217

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00743217

Keywords

Navigation