Skip to main content
Log in

The sulfhydryl groups of the 35,000-dalton C-terminal segment of band 3 are located in a 9000-dalton fragment produced by chymotrypsin treatment of red cell ghosts

  • Research Papers
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Five sulfhydryl groups of band 3, the anion-transport protein of the red blood cell membrane, can be labeled byN-ethylmaleimide (NEM). Two of these are located in a 35,000-dalton, C-terminal segment produced by chymotrypsin treatment of cells. Extensive treatment of unsealed ghosts with chymotrypsin results in the disappearance of the 35,000-dalton segment, but its two NEM-binding sites are preserved in a 9000-dalton peptide. The latter must therefore be a proteolytic product of the larger segment. Labeling of sulfhydryl groups of band 3 by an impermeant analog of NEM occurs in inside-out, but not in right-side-out vesicles derived from red cell ghosts, supporting the conclusion that NEM-reactive sulfhydryl groups, including those in the 35,000- and 9000-dalton segments, are exposed at the cytoplasmic face of the membrane. These findings support the conclusion that the 35,000-dalton segment crosses the bilayer, and suggest that the 9000-dalton segment may be a membrane-crossing portion of the 35,000-dalton segment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, R. E., and Schachter, D. (1976).J. Biol. Chem. 251 7176–7183.

    Google Scholar 

  • Cabantchik, Z. I., Knauf, P. A., and Rothstein, A. (1978).Biochim. Biophys. Acta 515 239–302.

    Google Scholar 

  • Cabantchik, Z. I., and Rothstein, A. (1974a).J. Membr. Biol. 15 207–226.

    Google Scholar 

  • Cabantchik, Z. I., and Rothstein, A. (1974b).J. Membr. Biol. 15 227–248.

    Google Scholar 

  • Drickamer, L. K. (1980).Ann. N.Y. Acad. Sci. 341 419–432.

    Google Scholar 

  • DuPre, A., and Rothstein, A. (1981).Biochim. Biophys. Acta, in press.

  • Grinstein, S., Ship, S., and Rothstein, A. (1978).Biochim. Biophys. Acta 507 294–304.

    Google Scholar 

  • Guidotti, G. (1972).Annu. Rev. Biochem. 41 731–752.

    Google Scholar 

  • Guidotti, G. (1977).J. Supramol. Struct. 7 489–497.

    Google Scholar 

  • Jennings, M. L., and Passow, H. (1979).Biochem. Biophys. Acta 554 498–519.

    Google Scholar 

  • Laemmli, U. K. (1970).Nature 227 680–685.

    Google Scholar 

  • Lepke, S., Fasold, H., Pring, M., and Passow, H. (1976).J. Membr. Biol. 29 147–177.

    Google Scholar 

  • Lowry, O. H., Rosebrough, M. J., Farr, A. L., and Randall, R. J. (1951).J. Biol. Chem. 193 263–275.

    Google Scholar 

  • Markowitz, S., and Marchesi, V. T. (1981).J. Biol. Chem., in press.

  • Passow, H., Fasold, H., Zaki, L., Schuhman, B., and Lepke, S. (1975). InBiomembranes: Structure and Function, G. Gardos and I. Szasz, eds., FEBS Symp., Vol. 35, North-Holland, Amsterdam, pp. 197–214.

    Google Scholar 

  • Ramjeesingh, M., Gaarn, A., and Rothstein, A. (1980a).Biochim. Biophys. Acta 599 127–139.

    Google Scholar 

  • Ramjeesingh, M., Grinstein, S., and Rothstein, A. (1980b).J. Membr. Biol. 57 95–102.

    Google Scholar 

  • Ramjeesingh, M., and Rothstein, A. (1981), submitted.

  • Rao, A. (1979).J. Biol. Chem. 254 3503–3511.

    Google Scholar 

  • Reithmeier, R. A. (1979).J. Biol. Chem. 254 3054–3060.

    Google Scholar 

  • Rothstein, A. and Ramjeesingh, M. (1980).Ann. N.Y. Acad. Sci. 358 1–12.

    Google Scholar 

  • Steck, T. L. (1974). InMethods in Membrane Biology, E. D. Korn, ed., Vol. 2, Plenum Press, New York, pp. 245–281.

    Google Scholar 

  • Steck, T. L., and Kant, J. A. (1974).Methods Enzymol. 31 172–173.

    Google Scholar 

  • Steck, T. L., Koziarz, J. J., Singh, M. K., Reddy, G., and Kohler, H. (1978).Biochemistry 17 1216–1222.

    Google Scholar 

  • Steck, T. L., Ramos, R., and Strapazon, E. (1976).Biochemistry 15 1154–1161.

    Google Scholar 

  • Swank, R. T., and Munkries, K. D. (1971).Anal. Biochem. 39 462–477.

    Google Scholar 

  • Tanner, M. J. A., Williams, D. G., and Jenkins, R. E. (1980).Ann. N.Y. Acad. Sci. 341 455–464.

    Google Scholar 

  • Tawney, P. O., Snyder, R. H., Canger, R. P., Leibbrand, K. A., Stiteler, C. H., and Williams, A. R. (1961).J. Org. Chem. 26 15–21.

    Google Scholar 

  • Williams, D. G., Jenkins, R. E., and Tanner, M. J. A. (1979).Biochem. J. 181 477–493.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramjeesingh, M., Gaarn, A. & Rothstein, A. The sulfhydryl groups of the 35,000-dalton C-terminal segment of band 3 are located in a 9000-dalton fragment produced by chymotrypsin treatment of red cell ghosts. J Bioenerg Biomembr 13, 411–423 (1981). https://doi.org/10.1007/BF00743213

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00743213

Key Words

Navigation