Journal of Bioenergetics and Biomembranes

, Volume 13, Issue 5–6, pp 393–409 | Cite as

Effect of chemical modifiers of amino acid residues on proton conduction by the H+-ATPase of mitochondria

  • F. Guerrieri
  • S. Papa
Research Papers


The effect of chemical modifiers of amino acid residues on the proton conductivity of H+-ATPase in “inside out” submitochondrial particles has been studied. Treatment of submitochondrial particles prepared in the presence of EDTA (ESMP) with the arginine modifiers, phenylglyoxal or butanedione, or the tyrosine modifier, tetranitromethane, caused inhibition of the ATPase activity. Phenylglyoxal and tetranitromethane also caused inhibition of the anaerobic release of respiratory ΔμH+ in ESMP as well as in particles deprived of F1 (USMP). Butanedione treatment caused, on the contrary, acceleration of anaerobic proton release in both particles. The inhibition of proton release caused by phenylglyoxal and tetranitromethane exhibited in USMP a sigmoidal titration curve. The same inhibitory pattern was observed with oligomycin and withN,N′-dicyclohexylcarbodiimide. In ESMP, relaxation of ΔμH+ exhibited two first-order phases, both an expression of the H+ conductivity of the ATPase complex. The rapid phase results from transient enhancement of H+ conduction caused by respiratory ΔμH+ itself. Oligomycin,N,N′-dicyclohexylcarbodiimide, and tetranitromethane inhibited both phases of H+ release, and butanedione accelerated both. Phenylglyoxal inhibited principally the slow phase of H+ conduction. In USMP, H+ release followed simple first-order kinetics. Oligomycin depressed H+ release, enhanced respiratory ΔμH+, and restored the biphasicity of H+ release. Phenylglyoxal and tetranitromethane inhibited H+ release in USMP without modifying its first-order kinetics. Butanedione treatment caused biphasicity of H+ release from USMP, introducing a very rapid phase of H+ release. Addition of soluble F1 to USMP also restored biphasicity of H+ release. A mechanism of proton conduction by F o is discussed based on involvement of tyrosine or other hydroxyl residues, in series with the DCCD-reactive acid residue. There are apparently two functionally different species of arginine or other basic residues: those modified by phenylglyoxal, which facilitate H+ conduction, and those modified by butanedione, which retard H+ diffusion.

Key Words

H+-ATPase proton conduction amino acid modification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altendorf, K. H., Hammel, U., Deckers, G., Kiltz, H. H., and Schimd, R. (1979). InFunction and Molecular Aspects of Biomembrane Transport E. Quagliarielloet al., eds., Elsevier/North-Holland, Amsterdam, New York, pp. 53–61.Google Scholar
  2. Borders, C. L., and Zurcher, J. A. (1979).FEBS Lett. 108 415–418.Google Scholar
  3. Celis, H. (1980).Biochem. Biophys. Res. Commun. 92 26–31.Google Scholar
  4. Criddle, R. S., Packer, L., and Shieh, P. (1977).Proc. Natl. Acad. Sci. USA 74 4306–4310.Google Scholar
  5. De Pierre, J. W., and Ernster, L. (1977).Annu. Rev. Biochem. 46 201–262.Google Scholar
  6. Dunker, A. K., and Marvin, D. A. (1978).J. Theor. Biol. 72 9–16.Google Scholar
  7. Fillingame, R. H. (1980).Annu. Rev. Biochem. 49 1100–1140.Google Scholar
  8. Frigeri, L., Galante, Y. M., Hanstein, W. G., and Hatefy, Y. (1977).J. Biochem. 252 3147–3152.Google Scholar
  9. Glaser, E., Norling, B., and Ernster, L. (1980).Eur. J. Biochem. 110 225–235.Google Scholar
  10. Harmon, H. J., Hall, J. D., and Crane, F. L. (1974).Biochim. Biophys. Acta 344 119–155.Google Scholar
  11. Hinkle, P. C., and Horstmann, L. L. (1971).J. Biol. Chem. 246 6024–6028.Google Scholar
  12. Horstmann, L. L., and Racker, E. (1970).J. Biol. Chem. 245 1336–1344.Google Scholar
  13. Huang, C. H., Keyhani, E., and Lee, C. P. (1973).Biochim. Biophys. Acta 305 455–473.Google Scholar
  14. Kagawa, Y. (1978).Biochim. Biophys. Acta 505 45–93.Google Scholar
  15. Lee, C. P., and Ernster, L. (1968).Eur J. Biochem. 3 391–400.Google Scholar
  16. Löw, H., and Vallin, J. (1963).Biochim. Biophys. Acta 69 361–374.Google Scholar
  17. Ludwig, B., Prochaska, L., and Capaldi, R. A. (1980).Biochemistry 19 1516–1523.Google Scholar
  18. Marcus, F., Schuster, S. M., and Lardy, H. A. (1976).J. Biol. Chem. 251 1775–1780.Google Scholar
  19. Nagle, J. F., and Morowitz, H. J. (1978).Proc. Natl. Acad. Sci USA 75 298–302.Google Scholar
  20. Nelson, N., Eytan, E., Natsani, B., Sigrist, H., Sigrist-Nelson, K., and Gitler, C. (1977).Proc. Natl. Acad. Sci. USA 74 936–940.Google Scholar
  21. Negrin, R. S., Foster, D. L., and Fillingame, R. F. (1980).J. Biol. Chem. 255 5643–5648.Google Scholar
  22. Okamoto, H., Sone, H., Hirata, H., Yoshida, H., and Kagawa, Y. (1977)J. Biol. Chem. 252 6125–6131.Google Scholar
  23. Olivier, D., and Jagendorf, A. (1976).J. Biol. Chem. 251 7168–7175.Google Scholar
  24. Pansini, A., Guerrieri, F., and Papa, S. (1978).Eur. J. Biochem. 92 545–511.Google Scholar
  25. Pansini, A., Guerrieri, F., and Papa, S. (1979). InMembrane Bioenergetics C. P. Leeet al., eds., Addison Wesley, Reading, Massachusetts, pp. 413–428.Google Scholar
  26. Papa, S., and Guerrieri, F. (1981). InThe Proton Cycle V. P. Skulacev and P. Hinkle, eds. Addison-Wesley, Reading, Massachusetts, in press.Google Scholar
  27. Papa, S., Guerrieri, F., and Rossi-Bernardi, L. (1979). InMethods in Enzymology S. Flesicher and L. Packer, eds., Vol. 55, Academic Press, New York, pp. 614–627.Google Scholar
  28. Papa, S., Guerrieri, F., Lorusso, M., Pansini, A., Izzo, G., Boffoli, D., and Capuano, F. (1977).BBA Lib. 14 127–138.Google Scholar
  29. Papa, S., Guerrieri, F., Simone, S., Lorusso, M., and Larosa, D. (1973).Biochim. Biophys. Acta 292 20–38.Google Scholar
  30. Pedersen, P. L. (1975).Bioenergetics 6 243–275.Google Scholar
  31. Portis, A. R., Magnusson, R. P., and McCarty, R. E. (1975).Biochim. Biophys. Res Commun. 64 877–884.Google Scholar
  32. Racker, E., and Horstmann, L. L. (1967).J. Biol. Chem. 242 2547–2551.Google Scholar
  33. Riordan, J. F. (1973).Biochemistry 12 3915–3923.Google Scholar
  34. Riordan, J. F., and Vallee, B. L. (1972). InMethods in Enzymology S. B. Colowick and N. O. Kaplan, eds. Vol. 25, Academic Press, New York, pp. 515–521.Google Scholar
  35. Sebald, W., Graf, Th., and Lukins, H. B. (1979a).Eur J. Biochem. 93 587–599.Google Scholar
  36. Sebald, W., Hoppe, J., and Wachter, E. (1979b). InFunction and Molecular Aspects of Biomembrane Transport E. Quagliarielloet al., eds., Elsevier/North Holland, Amsterdam, New York, pp. 63–74.Google Scholar
  37. Senior, A. E. (1973).Biochim. Biophys. Acta 301 249–277.Google Scholar
  38. Schipakin, V., Chuchlova, E., and Evtodienko, Y. (1976).Biochem. Biophys. Res. Commun. 69 123–127.Google Scholar
  39. Sigrist-Nelson, K., and Azzi, A. (1980).J. Biol. Chem. 255 10,638–10,643.Google Scholar
  40. Sone, N. I., Okamoto, T., and Kagawa, Y. (1981).J. Biol. Chem. 256 2873–2877.Google Scholar
  41. Sone, N. I., Ikeba, K., and Kagawa, Y. (1979a)FEBS Lett. 97 61–64.Google Scholar
  42. Sone, N. I., Yoshida, M., Hirata, H., and Kagawa, Y. (1979). 11th International Congress of Biochemistry, Toronto, Canada, July 1979, Abstr. Vol. No. 06-6-R51, p. 445.Google Scholar
  43. Werber, M. M., Moldovan, M., and Sokolowsky, M. (1975).Eur. J. Biochem. 53 207–216.Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • F. Guerrieri
    • 1
  • S. Papa
    • 1
  1. 1.Institute of Biological Chemistry, Faculty of Medicine and Center for the Study of Mitochondria and Energy Metabolism, C.N.R.University of BariBariItaly

Personalised recommendations