Skip to main content
Log in

Isolation, characterization, and reconstitution of a solubilized fraction containing the hydrophobic sector of the mitochondrial proton pump

  • Research Papers
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The hydrophobic sector of the mitochondrial ATPase complex was purified by sequential extraction with cholate and octylglucoside, by further differential solubilization with guanidine and cholate in the presence of phosphatidylcholine, and by fractionation with ammonium sulfate. A polypeptide with a mass of 28,000 dalton was present in the purified hydrophobic section which was cleaved by trypsin, resulting in loss of reconstitution activity. In contrast, dicyclohexylcarbodiimide-binding proteolipid remained unimpaired after exposure to trypsin. The32Pi-ATP exchange activity of the reconstituted ATPase complex was inhibited byp-hydroxymercuribenzoate, which reacted primarily with the 28,000-dalton protein, as monitored by acrylamide gel electrophoresis with14C-labeled inhibitor. The function of a 22,000-dalton polypeptide and of some minor components in the region of the proteolipid remains unknown. An examination of the phospholipid requirements for reconstitution of an active complex revealed an unexpected discrepancy. With an excess of phosphatidylethanolamine, optimal reconstitution of32Pi-ATP exchange and ATP synthesis in the presence of bacteriorhodopsin and light was achieved; at a high phosphatidylcholine:phosphatidylethanolamine ratio, the rate of ATP synthesis remained high, but the rate of32Pi-ATP exchange dropped precipitously. A new procedure is described for the reconstitution of the ATPase complex with purified phospholipids which is stable for at least 15 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DCCD:

N,N′-dicyclohexylcarbodiimide

STE-DTT buffer:

sucrose (250 mM), Tricine-KOH (50 mM), EDTA (5 mM), DTT (5 mM), pH 8.0

F o :

a membranous preparation from mitochondria conferring oligomycin (or rutamycin) sensitivity to F1

F1F6 :

coupling factors 1 (ATPase) and 6

OSCP:

oligomycin-sensitivity-conferring protein

BSA:

bovine serum albumin

SDS:

sodium dodecyl sulfate

DTT:

dithiothreitol

STE buffer:

sucrose (250 mM), Tricine-KOH (50 mM), EDTA (5 mM)

TUA particles:

submitochondrial particles prepared by stepwise exposure of light-layer submitochondrial particles to trypsin and urea, then sonic oscillation in the presence of dilute ammonia (pH 10.4)

OG-cholate buffer:

glycerol (20%), Tricine (50 mM), MgSO4 (5 mM), DTT (5mM), cholate (0.5%), octylglucoside (0.5%), pH 8.0

p-HMB:

p-hydroxymercuribenzoate

References

  • Alfonzo, M., and Racker, E. (1979).Can. J. Biochem. 57 1351–1358.

    Google Scholar 

  • Ames, B. N., and Dubin, D. T. (1960).J. Biol. Chem. 235 769–775.

    Google Scholar 

  • Banerjee, R., Epstein, M., Kandrach, M., Zimniak, P., and Racker, E. (1979).Membr. Biochem. 2 283–296.

    Google Scholar 

  • Becker, B. M., and Cassim, J. Y. (1975).Prep. Biochem. 5(2), 161–178.

    Google Scholar 

  • Bensadoun, A., Weinstein, D. (1976).Anal. Biochem. 70 241–250.

    Google Scholar 

  • Bulos, B., and Racker, E. (1968).J. Biol. Chem. 243 3891–3900.

    Google Scholar 

  • Carroll, R., and Racker, E. (1977).J. Biol. Chem. 252 6981–6990.

    Google Scholar 

  • Criddle, R. S., Packer, L., and Shieh, P. (1977).Proc. Natl. Acad. Sci. USA 74 4306–4310.

    Google Scholar 

  • Dunn, S. D., and Futai, M. (1980).J. Biol. Chem. 255 113–118.

    Google Scholar 

  • Futai, M., and Kanazawa, H. (1980).Curr. Top. Bioenerg. 10 181–215.

    Google Scholar 

  • Gómez-Puyou, A., Gómez-Puyou, M. T., and Ernster, L. (1979).Biochim. Biophys. Acta 547 252–257.

    Google Scholar 

  • Green, D. E., Lester, R. L., and Ziegler, D. M. (1957).Biochim. Biophys. Acta 23 516–524.

    Google Scholar 

  • Horstman, L. L., and Racker, E. (1970).J. Biol. Chem. 245 1336–1344.

    Google Scholar 

  • Kagawa, Y. (1978).Biochim. Biophys. Acta 505 45–93.

    Google Scholar 

  • Kagawa, Y., Kandrach, A., and Racker, E. (1973).J. Biol. Chem. 248 676–684.

    Google Scholar 

  • Kagawa, Y., and Racker, E. (1966).J. Biol. Chem. 241 2467–2474.

    Google Scholar 

  • Kagawa, Y., and Racker, E. (1971).J. Biol. Chem. 246 5477–5487.

    Google Scholar 

  • Kanner, B. I., Serrano, R., Kandrach, M. A., and Racker, E. (1976).Biochem. Biophys. Res. Commun. 69 1050–1056.

    Google Scholar 

  • Kasahara, M., and Hinkle, P. C. (1976).Proc. Natl. Acad. Sci. USA 73 396–400.

    Google Scholar 

  • Lanyi, J. K., and MacDonald, R. E. (1979). InMethods in Enzymology S. Fleischer and L. Packer, eds., Academic Press, New York, Vol. 56, pp. 398–407.

    Google Scholar 

  • Lindberg, O., and Ernster, L. (1956). InMethods of Biochemical Analysis Interscience, New York, Vol. 3, p. I.

    Google Scholar 

  • Lohmann, K., and Jendrassik, L. (1926).Biochem. Z. 178 419–426.

    Google Scholar 

  • Ludwig, B., and Schatz, G. (1980).Proc. Natl. Acad. Sci. USA 77 196–200.

    Google Scholar 

  • MacLennan, D. H., and Tzagoloff, A. (1968).Biochemistry 7 1603–1610.

    Google Scholar 

  • McCarty, R. E. (1979).Annu. Rev. Plant Phys. 30 79–104.

    Google Scholar 

  • Nelson, N. (1976).Biochim. Biophys. Acta. 456 314–338.

    Google Scholar 

  • Nelson, N., Eytan, E., Notsani, B., Sigrist, H., Sigrist-Nelson, K., and Gitler, C. (1977).Proc. Natl. Acad. Sci. USA 74 2375–2378.

    Google Scholar 

  • Nelson, N., Nelson, H., and Racker, E. (1972).J. Biol. Chem. 247 7657–7662.

    Google Scholar 

  • Oesterhelt, D., and Stoeckenius, W. (1974). InMethods in Enzymology S. Fleischer and L. Packer, eds. Academic Press, New York, Vol. 31, pp. 667–686.

    Google Scholar 

  • Pick, U., and Racker, E. (1979).J. Biol. Chem. 254 2793–2799.

    Google Scholar 

  • Pullman, M. E., and Monroy, G. C. (1963).J. Biol. Chem. 238 3762–3769.

    Google Scholar 

  • Racker, E. (1962).Proc. Natl. Acad. Sci. USA 48 1659–1663.

    Google Scholar 

  • Racker, E. (1979).Acc. Chem. Res. 12 338–344.

    Google Scholar 

  • Racker, E., and Stoeckenius, W. (1974).J. Biol. Chem. 249 662–663.

    Google Scholar 

  • Racker, E., Violand, B., O'Neal, S., Alfonzo, M., and Telford, J. (1979).Arch. Biochem. Biophys. 198 470–477.

    Google Scholar 

  • Ragan, C. I., and Racker, E. (1973).J. Biol. Chem. 248 2563–2569.

    Google Scholar 

  • Schatz, G., and Mason, T. L. (1974).Ann. Rev. Biochem. 43 51–87.

    Google Scholar 

  • Schneider, D. L., Kagawa, Y., and Racker, E. (1972).J. Biol. Chem. 247 4074–4079.

    Google Scholar 

  • Senior, A. E. (1971).Bioenergetics 2 141–150.

    Google Scholar 

  • Sone, N., Ohyama, T., and Kagawa, Y. (1979).FEBS Lett. 106 39–42.

    Google Scholar 

  • Swank, R. T., and Munkres, K. D. (1971).Anal. Biochem. 39 462–477.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alfonzo, M., Kandrach, M.A. & Racker, E. Isolation, characterization, and reconstitution of a solubilized fraction containing the hydrophobic sector of the mitochondrial proton pump. J Bioenerg Biomembr 13, 375–391 (1981). https://doi.org/10.1007/BF00743211

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00743211

Key Words

Navigation