Skip to main content
Log in

Succinylated bovine heart mitochondrial cytochromec oxidase

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Cytochromec oxidase was prepared by sequential extraction of bovine heart muscle submitochondrial particles with sodium deoxycholate, followed by fractional precipitation with ammonium sulfate and chromatography on Sephadex G-75. The resulting preparation had typical absorption spectra, an activity of 1.28 sec−1 (mg protein)−1 (3 ml)−1 in deoxycholate or 4.13 sec−1 (mg protein)−1 (3 ml)−1 in 0.5% Tween 80, and a minimum molecular weight of 120,000 daltons as calculated from the heme content and the total protein. Amino acid analyses of nine preparations yielded a molecular weight per heme of 86,500 daltons. The net charge was calculated to be +8.7 at pH 7.0. Succinylation of cytochromec oxidase in the presence of 500 molar excess of succinic anhydride produced a soluble preparation having a negative charge at neutral pH. The modified enzyme was highly autoxidizable and had little or no activity toward ferrocytochromec as a substrate. Its averageS 20,w was 5.8 and its apparentD was 4.0 × 10−7 cm2 sec−1, from which a molecular weight of 126,000 daltons was calculated. This size of enzyme is considered to be that of the monomer, because the value is practically the same as the minimum molecular weight reported herein, and since it is approximately onehalf the value obtained in our laboratory (and in others) for the unmodified enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. M. Klotz,Methods Enzymol. 11 (1967) 576.

    Google Scholar 

  2. A. Gounaris and M. Ottesen,C. R. Trav. Lab. Carlsberg 35 (1965) 37.

    Google Scholar 

  3. I. M. Klotz and S. Keresztes-Nagy,Biochemistry 2 (1964) 445.

    Google Scholar 

  4. A. F. Habeeb, H. G. Cassidy, and S. J. Singer,Biochim. Biophys. Acta 29 (1958) 587.

    Google Scholar 

  5. D. H. MacLennan, A. Tzagoloff, and J. Rieske,Arch. Biochem. Biophys. 109 (1965) 383.

    Google Scholar 

  6. D. H. MacLennan and A. Tzagoloff,Biochim. Biophys. Acta 96 (1965) 166.

    Google Scholar 

  7. Y. Kagawa,Biochim. Biophys. Acta 131 (1967) 586.

    Google Scholar 

  8. A. Tzagoloff, P. C. Yang, D. C. Wharton, and J. S. Rieske,Biochim. Biophys. Acta 96 (1965) 1.

    Google Scholar 

  9. B. Love, S. Chan, and E. Stotz,J. Biol. Chem. 245 (1970) 6664.

    Google Scholar 

  10. H. Matsubara, Y. Orii, and K. Okunuki,Biochim. Biophys. Acta 97 (1965) 61.

    Google Scholar 

  11. W. W. Wainio, T. Laskowska-Klita, J. Rosman, and D. Grebner,J. Bioenergetics 4 (1973) 455.

    Google Scholar 

  12. W. W. Wainio, S. J. Cooperstein, S. Kollen, and B. Eichel,J. Biol. Chem. 173 (1948) 145.

    Google Scholar 

  13. D. Keilin and E. F. Hartree,Proc. Roy. Soc., Ser. B 125 (1938) 171.

    Google Scholar 

  14. C. R. Szalkowski and W. J. Mader,Anal. Chem. 235 (1952) 1602.

    Google Scholar 

  15. L. T. Kremzner and W. W. Wainio,Biochim. Biophys Acta 52 (1961) 208.

    Google Scholar 

  16. J. Opieńska-Blauth, M. Chareziński, and H. Barbeć,Anal. Biochem. 6 (1963) 69.

    Google Scholar 

  17. J. Spies,Anal. Chem. 39 (1967) 1412.

    Google Scholar 

  18. B. J. Davis,Ann. N.Y. Acad. Sci. 121 (1964) 404.

    Google Scholar 

  19. H. R. Maurer, inDisc Electrophoresis, K. Fishbeck, ed., Walter de Gruyter, Berlin (1971).

    Google Scholar 

  20. S. Takemori, I. Sekuzu, and K. Okunuki,Biochim. Biophys. Acta 51 (1961) 464.

    Google Scholar 

  21. W. W. Wainio, B. Eichel, and A. Gould,J. Biol. Chem. 235 (1960) 1521.

    Google Scholar 

  22. D. E. Griffiths and D. C. Wharton,J. Biol. Chem. 236 (1961) 1857.

    Google Scholar 

  23. T. Yonetani,J. Biol. Chem. 236 (1961) 1680.

    Google Scholar 

  24. L. R. Fowler, S. H. Richardson, and Y. Hatefi,Biochim. Biophys. Acta 64 (1962) 170.

    Google Scholar 

  25. W. W. Wainio,J. Biol. Chem. 239 (1964) 1402.

    Google Scholar 

  26. F. F. Sun, K. S. Prezbindowski, F. L. Crane, and E. E. Jacobs,Biochim. Biophys. Acta 153 (1968) 804.

    Google Scholar 

  27. J. J. Kierns, C. S. Yang, and M. V. Gilmour,Biochem. Biophys. Res. Commun. 45 (1971) 835.

    Google Scholar 

  28. I. Zamudio and G. R. Williams,Arch. Biochem. Biophys. 143 (1971) 240.

    Google Scholar 

  29. H. Komai and R. A. Capaldi,FEBS Lett. 30 (1973) 273.

    Google Scholar 

  30. T. Ozawa, M. Okumura, and K. Yagi,Biochem. Biophys. Res. Commun. 65 (1975) 1102.

    Google Scholar 

  31. R. A. Capaldi and G. Vanderkooi,Proc. Natl. Acad. Sci. U.S.A. 69 (1972) 930.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hillman, K., Wainio, W.W. Succinylated bovine heart mitochondrial cytochromec oxidase. J Bioenerg Biomembr 9, 181–193 (1977). https://doi.org/10.1007/BF00743192

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00743192

Keywords

Navigation