Skip to main content
Log in

Characterization of cytochrome oxidase purified from rat liver

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The purpose of this study was to characterize the physical properties of cytochromec oxidase from rat liver. The enzyme was extracted from isolated mitochondria with nonionic detergents and further purified by ion-exchange chromatography on DEAE Bio-Gel A. The purified enzyme contained 9.64 nmol heme a/mg protein and one iron atom plus one copper atom for each heme a. The specific activity of the final preparation was 146 µmol of ferrocytochromec oxidized/min · mg protein, measured at pH 5.7. The spectral properties of the enzyme were characteristic of purified cytochrome oxidase and indicated that the preparation was free of cytochromesb, c, andc 1. In analytical ultracentrifugation studies, the enzyme sedimented as a single component with anS 20,w of5.35S. The Stokes radius of the enzyme was determined by gel filtration chromatography and was equal to 75 Å. The molecular weight of the oxidase calculated from its sedimentation coefficient and Stokes' radius was 180,000, indicating that the active enzyme contained two heme a groups. The purified cytochrome oxidase was also subjected to dodecyl sulfate-polyacrylamide gel electrophoresis in order to determine its components. The enzyme was resolved into five polypeptides with the molecular weights of I, 27,100; II, 15,000; III, 11,900; IV 9800; and V, 9000.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Lemberg and J. Barrett,Cytochromes Academic Press, New York (1973), pp. 17–57.

    Google Scholar 

  2. N.F. Gonzales-Cadavid,Subcell. Biochem. 3 (1974) 275.

    Google Scholar 

  3. W. Sebald, H. Weiss, and G. Jackl,Eur. J. Biochem. 30 (1972) 413.

    Google Scholar 

  4. W. Sebald, W. Machleidt, and J. Otto,Eur. J. Biochem. 38 (1973) 311.

    Google Scholar 

  5. T.L. Mason, R.O. Poyton, D.C. Wharton, and G. Schatz,J. Biol. Chem. 248 (1973) 1346.

    Google Scholar 

  6. M.S. Rubin and A. Tzagoloff,J. Biol. Chem. 248 (1973) 4269.

    Google Scholar 

  7. R.O. Poyton and G. Schatz,J. Biol. Chem. 250 (1975) 752.

    Google Scholar 

  8. T.L. Mason and G. Schatz,J. Biol. Chem. 248 (1973) 1355.

    Google Scholar 

  9. M.S. Rubin and A. Tzagoloff,J. Biol. Chem. 248 (1973) 4275.

    Google Scholar 

  10. I.-C. Kim and D.S. Beattie,Eur. J. Biochem. 36 (1973) 509.

    Google Scholar 

  11. L.-F.H. Lin, I.-C. Kim, and D.S. Beattie, Arch. Biochem. Biophys.,160 (1974) 458.

    Google Scholar 

  12. E.E. Jacobs, E.C. Andrews, W. Cunningham, and F.L. Crane,Biochem. Biophys. Res. Commun. 25 (1966) 87.

    Google Scholar 

  13. E.E. Jacobs, F.H. Kirkpatrick, Jr., E.C. Andrews, W. Cunningham, and F.L. Crane,Biochem. Biophys. Res. Commun. 25 (1966) 96.

    Google Scholar 

  14. E.E. Jacobs, E.C. Andrews, H. Wohlrab, and W. Cunningham, in:Structure and Function of Cytochromes K. Okunuki, M.D. Kamen, and I. Sekuzu (Eds.), University Park Press, Baltimore (1967), p. 114.

    Google Scholar 

  15. O.H. Lowry, N.H. Roseborough, A. L. Farr, and R. J. Randall,J. Biol. Chem. 193 (1951) 265.

    Google Scholar 

  16. K.A. Doeg and D. M. Ziegler,Arch. Biochem. Biophys. 97 (1962) 37.

    Google Scholar 

  17. P. E Brumby and V. Massey, in:Methods in Enzymology S.P. Colowick and N.O. Kaplan (Eds.), Academic Press, New York, Vol. X (1967), p. 473.

    Google Scholar 

  18. J. Folch, M. Lees, and G.H.S. Stanley,J. Biol. Chem. 26 (1957) 497.

    Google Scholar 

  19. P.S. Chen, T.Y. Toribara, and H. Warner, Anal. Chem.,28 (1956) 1756.

    Google Scholar 

  20. R. W. Estabrook and A. Holowinsky,J. Biophys. Biochem. Cytol. 9 (1961) 19.

    Google Scholar 

  21. T. Tsudzuki, Y. Orii, and K. Okunuki,J. Biochem. (Tokyo) 62 (1967) 37.

    Google Scholar 

  22. L. Smith, in:Methods in Enzymology S.P. Colowick and N.O. Kaplan (Eds.), Academic Press, New York, Vol. II (1955), p. 735.

    Google Scholar 

  23. T.C. McIlvaine,J. Biol. Chem. 49 (1921) 183.

    Google Scholar 

  24. T. Svedberg and K.O. Pedersen,The Ultracentrifuge Oxford University Press, London (1940), pp. 376–377, 390.

    Google Scholar 

  25. A. Pesce, R.H. McKay, F. Stolzenback, R.D. Cahn, and N.O. Kaplan,J. Biol. Chem. 239 (1964) 1753.

    Google Scholar 

  26. J.A. Olson and C.B. Anfinsen,J. Biol. Chem. 197 (1952) 67.

    Google Scholar 

  27. H.-U. Bergmeyer, E. Brent, and B. Hess, in:Methods of Enzymatic Analysis H.-U. Bergmeyer (Ed.), Academic Press, New York (1963), p. 736.

    Google Scholar 

  28. E. Schmidt, in:Methods of Enzymatic Analysis H.-U. Bergmeyer (Ed.), Academic Press, New York (1963), p. 752.

    Google Scholar 

  29. K. Weber and M. Osborn,J. Biol. Chem. 244 (1969) 4406.

    Google Scholar 

  30. I.Z. Ades, Ph.D. Thesis, University of California at Los Angeles (1976).

  31. T. Yonetani,J. Biol. Chem. 236 (1961) 1680.

    Google Scholar 

  32. M. Kuboyama, F.C. Young, and T.E. King,J. Biol. Chem. 247 (1972) 6375.

    Google Scholar 

  33. Y.C. Awasthi, T.F. Chuang, T.W. Keenan, and F.L. Crane,Biochim. Biophys. Acta 226 (1971) 42.

    Google Scholar 

  34. N.C. Robinson and RA. Capaldi,Biochemistry 16 (1977) 375.

    Google Scholar 

  35. M.R. Lemberg,Physiol. Rev. 49 (1969) 48.

    Google Scholar 

  36. S.H. Phan and H.R. Mahler,J. Biol. Chem. 251 (1976) 257.

    Google Scholar 

  37. L. Fisher, in:Laboratory Techniques in Biochemistry and Molecular Biology T.S. Work and E. Work (Eds.), North-Holland, Amsterdam (1972), pp. 168–174.

    Google Scholar 

  38. L.M. Siegel and K.J. Monty,Biochim. Biophys. Acta 112 (1966) 346.

    Google Scholar 

  39. C.A. MacMunn,J. Physiol. 8 (1887) 51.

    Google Scholar 

  40. D. Keilin,Proc. Roy. Soc. B98 (1925) 312.

    Google Scholar 

  41. D. Keilin and E.F. Hartree,Proc. Roy. Soc. B127 (1939) 167.

    Google Scholar 

  42. D.C. Wharton and Q.H. Gibson,J. Biol. Chem. 251 (1976) 2861.

    Google Scholar 

  43. E. Yakushiji and K. Okunuki,Proc. Imp. Acad. (Tokyo) 16 (1940) 229.

    Google Scholar 

  44. F.B. Straub,Z. Physiol. Chem. 268 (1941) 227.

    Google Scholar 

  45. K. Okunuki, in:Oxygenase O. Hayaishi (Ed.), Academic Press, New York (1962), p. 409.

    Google Scholar 

  46. H. Weiss, B. Lorenz, and W. Kleinow,Fed. Eur. Biochem. Soc. Lett. 25 (1972) 49.

    Google Scholar 

  47. N.W. Downer, N.C. Robinson, and R.A. Capaldi,Biochemistry 15 (1976) 2930.

    Google Scholar 

  48. H. Komai and R.A. Capaldi,Fed. Eur. Biochem. Soc. Lett. 30 (1973) 273.

    Google Scholar 

  49. S.H. Phan and H.R. Mahler,J. Biol. Chem. 251 (1976) 270.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ades, I.Z., Cascarano, J. Characterization of cytochrome oxidase purified from rat liver. J Bioenerg Biomembr 9, 237–253 (1977). https://doi.org/10.1007/BF00743154

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00743154

Keywords

Navigation