Skip to main content
Log in

Concentration quenching in chlorophyll-a and relation to functional charge transferin vivo

  • Research Articles
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Chlorophyll-a in ordinary solvents exhibits concentration quenching. Dimeric chlorophyll is reasonably well confirmed as the quenching species, by a critical reanalysis of available data on concentration dependence and on spectral features, in ordinary solvents, and in several analogous quenching environments. This quenching in the dimer in vitro is somewhat less firmly analyzed as due to a new fast internal conversion. Much peripheral evidence supports transient charge transfer as the cause of internal conversion. The same evidence points to a strong similarity to functional charge transfer in vivo. I suggest that inability to extract P680 may be due to its conversion to a form resembling P700 by addition of water.

A number of straightforward experiments are suggested to test these proposals. In particular, it is desirable to test for the existence of a vibronic perturbation (from a higher* state) in the dimer, as an alternative to charge transfer for explaining the “observed” internal conversion. Such a vibronic cause would raise interesting problems for phototrap function in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Th. Förster, inProceedings of the International Conference on Luminescence, Budapest, 1966, Akadémia Kiadó, Budapest (1968) pp. 160–165.

  2. E. G. McRae and M. Kasha,J. Chem. Phys.,28 (1958) 721–722.

    Google Scholar 

  3. W. F. Watson and R. Livingston,J. Chem. Phys.,18 (1950) 802–809.

    Google Scholar 

  4. R. Livingston, W. F. Watson, and J. McArdle,J. Am. Chem. Soc.,71 (1949) 1542–1550.

    Google Scholar 

  5. R. L. Amster,Photochem. Photobiol.,9 (1969) 331–338.

    Google Scholar 

  6. J. Fernandez and R. S. Becker,J. Chem. Phys.,31 (1959) 467–472.

    Google Scholar 

  7. J. J. Katz and J. R. Norris, Jr., inCurrent Topics in Bioenergetics, Vol. 5 (D. Rao Sanadi and L. Packer, eds.), Academic Press, New York (1973) pp. 41–75.

    Google Scholar 

  8. A. C. Pugh, Unpublished observations, University of Minnesota (1959).

  9. R. Livingston and E. Fujimori,J. Am. Chem. Soc.,80 (1958) 5610–5613.

    Google Scholar 

  10. G. R. Seely, inThe Chlorophylls (L. P. Vernon and G. R. Seely, eds.), Academic Press, New York (1966) pp. 523–568.

    Google Scholar 

  11. W. M. Parson and R. J. Cogdell,Biochim. Biophys. Acta,416 (1975) 105–149.

    Google Scholar 

  12. K. J. Kaufmann, P. L. Dutton, T. L. Netzel, J. S. Leigh, and P. M. Rentzepis,Science,188 (1975) 1301–1304.

    Google Scholar 

  13. P. L. Dutton,Photochem. Photobiol.,24 (1976) 655–657.

    Google Scholar 

  14. I. S. Singh and R. S. Becker,J. Am. Chem. Soc.,82 (1960) 2083–2084.

    Google Scholar 

  15. E. C. Lim and J. M. H. Yu,J. Chem. Phys., 45 (1966) 4742–4743.

    Google Scholar 

  16. R. Li and E. C. Lim,J. Chem. Phys.,57 (1972) 605–611.

    Google Scholar 

  17. N. Kanamaru and E. C. Lim,J. Chem. Phys.,62 (1975) 3252–3257.

    Google Scholar 

  18. R. S. Knox, inBioenergetics of Photosynthesis (Govindjee, ed.), Academic Press, New York (1975) pp. 183–221.

    Google Scholar 

  19. E. T. Rabinowitch,Photosynthesis,11 (1951) 759–777.

    Google Scholar 

  20. Th. Förster,Z. Naturforsch.,4A (1949) 321–327.

    Google Scholar 

  21. K. Ballschmiter, K. Truesdell, and J. J. Katz,Biochim. Biophys. Acta,184 (1969) 604–613.

    Google Scholar 

  22. S. S. Broyde, S. S. Brody, and M. Brody,Biochim. Biophys. Acta,153 (1968) 183–187.

    Google Scholar 

  23. G. R. Seely,J. Phys. Chem.,80 (1976) 441–446.

    Google Scholar 

  24. G. S. Beddard and G. Porter,Nature,260 (1976) 366–367.

    Google Scholar 

  25. K. Ballschmiter and J. J. Katz,J. Am. Chem. Soc.,91 (1969) 2661–2677.

    Google Scholar 

  26. J. J. Katz, K. Ballschmiter, M. Garcia-Morin, H. H. Strain, and R. A. Uphaus,Proc. Natl. Acad. Sci. U.S.A.,60 (1968) 100–107.

    Google Scholar 

  27. G. L. Closs, J. J. Katz, F. C. Pennington, M. R. Thomas, and H. H. Strain,J. Am. Chem. Soc.,85 (1963) 3809–3821.

    Google Scholar 

  28. K. Sauer, J. R. Lindsay Smith, and A. J. Schultz,J. Am. Chem. Soc.,88 (1966) 2681–2688.

    Google Scholar 

  29. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird,Molecular Theory of Gases and Liquids, Wiley, New York (1954) p. 849.

    Google Scholar 

  30. G. R. Seely,J. Phys. Chem.,71 (1967) 2091–2102.

    Google Scholar 

  31. G. R. Seely,J. Phys. Chem.,74 (1970) 219–227.

    Google Scholar 

  32. V. P. Gutschick and W. B. Goad,Biophys. J., in revision.

  33. A. J. Campillo, V. H. Kollman, and S. L. Shapiro,Science,193 (1976) 227–229.

    Google Scholar 

  34. A. J. Campillo and S. L. Shapiro, inUltrashort Light Pulses (S. L. Shapiro, ed.), Springer, Berlin (1977) pp. 317–360.

    Google Scholar 

  35. K. Sauer, inBioenergetics of Photosynthesis (Govindjee, ed.), Academic Press, New York (1975) pp. 144–148.

    Google Scholar 

  36. L. L. Shipman, T. M. Cotton, J. R. Norris, and J. J. Katz,Proc. Natl. Acad. Sci. U.S.A.,73 (1976) 1791–1794.

    Google Scholar 

  37. J. R. Norris, R. A. Uphaus, H. L. Crespi, and J. J. Katz,Proc. Natl. Acad. Sci. U.S.A.,68 (1971) 625–628.

    Google Scholar 

  38. G. Papageorgiou, inBioenergetics of Photosynthesis (Govindjee, ed.), Academic Press, New York (1975) pp. 320–371.

    Google Scholar 

  39. Th. Förster,Pure Appl. Chem.,4 (1962) 121–134.

    Google Scholar 

  40. R. E. Kellogg and N. C. Wyeth,J. Chem. Phys.,45 (1966) 3156–3158.

    Google Scholar 

  41. B. R. Henry and W. Siebrand, inOrganic Molecular Photophysics (J. B. Birks, ed.), Wiley, New York (1973) pp. 153–237, esp. Fig. 4.7.

    Google Scholar 

  42. P. G. Bowers and G. Porter,Proc. Roy. Soc. (London),A296 (1967) 435–441.

    Google Scholar 

  43. M. N. Usacheva, V. A. Dagaev, and B. Ya. Dain,Teor. Eksper. Khim.,6, (1970) 770–775.

    Google Scholar 

  44. J. Breton and P. Mathis,Compt. Rend.,D271 (1970) 1094–1096.

    Google Scholar 

  45. L. L. Shipman, T. R. Janson, G. J. Ray, and J. J. Katz,Proc. Natl. Acad. Sci. U.S.A.,72 (1975) 2873–2876.

    Google Scholar 

  46. G. P. Gurinovich, A. N. Sevchenko, and K. N. Solov'ev,Spectroscopy of Chlorophyll and Related Compounds, Izd. Nauka i Tekhn., Minsk (1968). English translation AEC-tr-7199.

    Google Scholar 

  47. H. Leonhardt and A. Weller,Z. phys. chem.,29 (1961) 277–280.

    Google Scholar 

  48. J. B. Birks,Photophysics of Aromatic Molecules, Wiley-Interscience, New York (1970) pp. 429–433.

    Google Scholar 

  49. J. A. Barltrop and J. D. Coyle,Excited States in Organic Chemistry, Wiley, New York (1975) pp. 112–116.

    Google Scholar 

  50. D. Holten, M. Gouterman, W. W. Parson, M. W. Windsor, and M. G. Rockley,Photochem. Photobiol.,23 (1976) 415–424.

    Google Scholar 

  51. M. Gouterman and D. Holten,Photochem. Photobiol.,25 (1977) 85–91.

    Google Scholar 

  52. R. S. Mulliken and W. B. Person,Molecular Complexes, Wiley, New York (1969) pp. 33–41.

    Google Scholar 

  53. T. Saji and A. J. Bard,J. Am. Chem. Soc.,99 (1977) 2235–2240.

    Google Scholar 

  54. B. A. Kiselev, Yu. N. Kozlov, and V. B. Evstigneev,Dokl. Akad. Nauk. SSSR,226 (1976) 210–213.

    Google Scholar 

  55. B. A. Kiselev, Yu. N. Kozlov, and V. B. Evstigneev,Biofizika,15 (1970) 594–601.

    Google Scholar 

  56. J. J. Hopfield,Proc. Natl. Acad. Sci. U.S.A.,71 (1974) 3640–3644.

    Google Scholar 

  57. M. J. Potasek and J. J. Hopfield,Proc. Natl. Acad. Sci. U.S.A.,74 (1977) 229–233.

    Google Scholar 

  58. J. D. Fajer, C. Brune, M. S. Davis, A. Forman, and L. D. Spaulding,Proc. Natl. Acad. Sci. U.S.A.,72 (1975) 4956–4960.

    Google Scholar 

  59. J. Fajer, M. S. Davis, and A. Forman,Biophys. J.,17 (1977) 150a.

    Google Scholar 

  60. K. J. Kaufmann, K. M. Petty, P. L. Dutton, and P. M. Rentzepis,Biochem. Biophys. Res. Commun.,70 (1976) 839–845.

    Google Scholar 

  61. R. E. Blankenship, T. J. Schaafsma, and W. W. Parson,Biophys. J.,17 (1977) 148a.

    Google Scholar 

  62. A. W. H. Mau and M. Puza,Photochem. Photobiol.,25 (1977) 601–603.

    Google Scholar 

  63. A. A. Krasnovskii, Jr., N. N. Lebedev, and F. F. Litvin,Dokl. Akad. Nauk SSSR,216 (1974) 39–42.

    Google Scholar 

  64. R. E. Fenna and B. W. Matthews,Nature,258 (1975) 573–577.

    Google Scholar 

  65. M. R. Wasielewski, M. H. Studier, and J. J. Katz,Proc. Natl. Acad. Sci. U.S.A.,73 (1976) 4282–4286.

    Google Scholar 

  66. R. S. Becker and M. Kasha,J. Am. Chem. Soc.,77 (1955) 3669–3670.

    Google Scholar 

  67. R. S. Becker and M. Kasha, inThe Luminescence of Biological Systems (F. H. Johnson, ed.), Am. Assoc. Advan. Sci., Washington, D.C. (1955) pp. 25–45.

    Google Scholar 

  68. P.-S. Song, T. A. Moore, and M. Sun,Adv. Food Res.,3 Suppl (1972) 33–77.

    Google Scholar 

  69. P.-S. Song, T. A. Moore, W. H. Gordon III, M. Sun, and C.-N. Ou, inOrganic Scintillators in Liquid Scintillation Counting (D. L. Horrocks and C. T. Peng, eds.), Academic Press, New York (1971) pp. 521–544.

    Google Scholar 

  70. F. F. Litvin, R. I. Personov, and O. N. Karataev,Dokl. Akad. Nauk SSSR,188 (1969) 1169–1171.

    Google Scholar 

  71. S. L. Madej, S. Okajima, and E. C. Lim,J. Chem. Phys.,65, (1976) 1219–1220.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutschick, V.P. Concentration quenching in chlorophyll-a and relation to functional charge transferin vivo . J Bioenerg Biomembr 10, 153–170 (1978). https://doi.org/10.1007/BF00743105

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00743105

Keywords

Navigation