Journal of Bioenergetics and Biomembranes

, Volume 10, Issue 5–6, pp 153–170 | Cite as

Concentration quenching in chlorophyll-a and relation to functional charge transferin vivo

  • Vincent P. Gutschick
Research Articles


Chlorophyll-a in ordinary solvents exhibits concentration quenching. Dimeric chlorophyll is reasonably well confirmed as the quenching species, by a critical reanalysis of available data on concentration dependence and on spectral features, in ordinary solvents, and in several analogous quenching environments. This quenching in the dimer in vitro is somewhat less firmly analyzed as due to a new fast internal conversion. Much peripheral evidence supports transient charge transfer as the cause of internal conversion. The same evidence points to a strong similarity to functional charge transfer in vivo. I suggest that inability to extract P680 may be due to its conversion to a form resembling P700 by addition of water.

A number of straightforward experiments are suggested to test these proposals. In particular, it is desirable to test for the existence of a vibronic perturbation (from a higher* state) in the dimer, as an alternative to charge transfer for explaining the “observed” internal conversion. Such a vibronic cause would raise interesting problems for phototrap function in vivo.


Chlorophyll Organic Chemistry Charge Transfer Spectral Feature Concentration Dependence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Th. Förster, inProceedings of the International Conference on Luminescence, Budapest, 1966, Akadémia Kiadó, Budapest (1968) pp. 160–165.Google Scholar
  2. 2.
    E. G. McRae and M. Kasha,J. Chem. Phys.,28 (1958) 721–722.Google Scholar
  3. 3.
    W. F. Watson and R. Livingston,J. Chem. Phys.,18 (1950) 802–809.Google Scholar
  4. 4.
    R. Livingston, W. F. Watson, and J. McArdle,J. Am. Chem. Soc.,71 (1949) 1542–1550.Google Scholar
  5. 5.
    R. L. Amster,Photochem. Photobiol.,9 (1969) 331–338.Google Scholar
  6. 6.
    J. Fernandez and R. S. Becker,J. Chem. Phys.,31 (1959) 467–472.Google Scholar
  7. 7.
    J. J. Katz and J. R. Norris, Jr., inCurrent Topics in Bioenergetics, Vol. 5 (D. Rao Sanadi and L. Packer, eds.), Academic Press, New York (1973) pp. 41–75.Google Scholar
  8. 8.
    A. C. Pugh, Unpublished observations, University of Minnesota (1959).Google Scholar
  9. 9.
    R. Livingston and E. Fujimori,J. Am. Chem. Soc.,80 (1958) 5610–5613.Google Scholar
  10. 10.
    G. R. Seely, inThe Chlorophylls (L. P. Vernon and G. R. Seely, eds.), Academic Press, New York (1966) pp. 523–568.Google Scholar
  11. 11.
    W. M. Parson and R. J. Cogdell,Biochim. Biophys. Acta,416 (1975) 105–149.Google Scholar
  12. 12.
    K. J. Kaufmann, P. L. Dutton, T. L. Netzel, J. S. Leigh, and P. M. Rentzepis,Science,188 (1975) 1301–1304.Google Scholar
  13. 13.
    P. L. Dutton,Photochem. Photobiol.,24 (1976) 655–657.Google Scholar
  14. 14.
    I. S. Singh and R. S. Becker,J. Am. Chem. Soc.,82 (1960) 2083–2084.Google Scholar
  15. 15.
    E. C. Lim and J. M. H. Yu,J. Chem. Phys., 45 (1966) 4742–4743.Google Scholar
  16. 16.
    R. Li and E. C. Lim,J. Chem. Phys.,57 (1972) 605–611.Google Scholar
  17. 17.
    N. Kanamaru and E. C. Lim,J. Chem. Phys.,62 (1975) 3252–3257.Google Scholar
  18. 18.
    R. S. Knox, inBioenergetics of Photosynthesis (Govindjee, ed.), Academic Press, New York (1975) pp. 183–221.Google Scholar
  19. 19.
    E. T. Rabinowitch,Photosynthesis,11 (1951) 759–777.Google Scholar
  20. 20.
    Th. Förster,Z. Naturforsch.,4A (1949) 321–327.Google Scholar
  21. 21.
    K. Ballschmiter, K. Truesdell, and J. J. Katz,Biochim. Biophys. Acta,184 (1969) 604–613.Google Scholar
  22. 22.
    S. S. Broyde, S. S. Brody, and M. Brody,Biochim. Biophys. Acta,153 (1968) 183–187.Google Scholar
  23. 23.
    G. R. Seely,J. Phys. Chem.,80 (1976) 441–446.Google Scholar
  24. 24.
    G. S. Beddard and G. Porter,Nature,260 (1976) 366–367.Google Scholar
  25. 25.
    K. Ballschmiter and J. J. Katz,J. Am. Chem. Soc.,91 (1969) 2661–2677.Google Scholar
  26. 26.
    J. J. Katz, K. Ballschmiter, M. Garcia-Morin, H. H. Strain, and R. A. Uphaus,Proc. Natl. Acad. Sci. U.S.A.,60 (1968) 100–107.Google Scholar
  27. 27.
    G. L. Closs, J. J. Katz, F. C. Pennington, M. R. Thomas, and H. H. Strain,J. Am. Chem. Soc.,85 (1963) 3809–3821.Google Scholar
  28. 28.
    K. Sauer, J. R. Lindsay Smith, and A. J. Schultz,J. Am. Chem. Soc.,88 (1966) 2681–2688.Google Scholar
  29. 29.
    J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird,Molecular Theory of Gases and Liquids, Wiley, New York (1954) p. 849.Google Scholar
  30. 30.
    G. R. Seely,J. Phys. Chem.,71 (1967) 2091–2102.Google Scholar
  31. 31.
    G. R. Seely,J. Phys. Chem.,74 (1970) 219–227.Google Scholar
  32. 32.
    V. P. Gutschick and W. B. Goad,Biophys. J., in revision.Google Scholar
  33. 33.
    A. J. Campillo, V. H. Kollman, and S. L. Shapiro,Science,193 (1976) 227–229.Google Scholar
  34. 34.
    A. J. Campillo and S. L. Shapiro, inUltrashort Light Pulses (S. L. Shapiro, ed.), Springer, Berlin (1977) pp. 317–360.Google Scholar
  35. 35.
    K. Sauer, inBioenergetics of Photosynthesis (Govindjee, ed.), Academic Press, New York (1975) pp. 144–148.Google Scholar
  36. 36.
    L. L. Shipman, T. M. Cotton, J. R. Norris, and J. J. Katz,Proc. Natl. Acad. Sci. U.S.A.,73 (1976) 1791–1794.Google Scholar
  37. 37.
    J. R. Norris, R. A. Uphaus, H. L. Crespi, and J. J. Katz,Proc. Natl. Acad. Sci. U.S.A.,68 (1971) 625–628.Google Scholar
  38. 38.
    G. Papageorgiou, inBioenergetics of Photosynthesis (Govindjee, ed.), Academic Press, New York (1975) pp. 320–371.Google Scholar
  39. 39.
    Th. Förster,Pure Appl. Chem.,4 (1962) 121–134.Google Scholar
  40. 40.
    R. E. Kellogg and N. C. Wyeth,J. Chem. Phys.,45 (1966) 3156–3158.Google Scholar
  41. 41.
    B. R. Henry and W. Siebrand, inOrganic Molecular Photophysics (J. B. Birks, ed.), Wiley, New York (1973) pp. 153–237, esp. Fig. 4.7.Google Scholar
  42. 42.
    P. G. Bowers and G. Porter,Proc. Roy. Soc. (London),A296 (1967) 435–441.Google Scholar
  43. 43.
    M. N. Usacheva, V. A. Dagaev, and B. Ya. Dain,Teor. Eksper. Khim.,6, (1970) 770–775.Google Scholar
  44. 44.
    J. Breton and P. Mathis,Compt. Rend.,D271 (1970) 1094–1096.Google Scholar
  45. 45.
    L. L. Shipman, T. R. Janson, G. J. Ray, and J. J. Katz,Proc. Natl. Acad. Sci. U.S.A.,72 (1975) 2873–2876.Google Scholar
  46. 46.
    G. P. Gurinovich, A. N. Sevchenko, and K. N. Solov'ev,Spectroscopy of Chlorophyll and Related Compounds, Izd. Nauka i Tekhn., Minsk (1968). English translation AEC-tr-7199.Google Scholar
  47. 47.
    H. Leonhardt and A. Weller,Z. phys. chem.,29 (1961) 277–280.Google Scholar
  48. 48.
    J. B. Birks,Photophysics of Aromatic Molecules, Wiley-Interscience, New York (1970) pp. 429–433.Google Scholar
  49. 49.
    J. A. Barltrop and J. D. Coyle,Excited States in Organic Chemistry, Wiley, New York (1975) pp. 112–116.Google Scholar
  50. 50.
    D. Holten, M. Gouterman, W. W. Parson, M. W. Windsor, and M. G. Rockley,Photochem. Photobiol.,23 (1976) 415–424.Google Scholar
  51. 51.
    M. Gouterman and D. Holten,Photochem. Photobiol.,25 (1977) 85–91.Google Scholar
  52. 52.
    R. S. Mulliken and W. B. Person,Molecular Complexes, Wiley, New York (1969) pp. 33–41.Google Scholar
  53. 53.
    T. Saji and A. J. Bard,J. Am. Chem. Soc.,99 (1977) 2235–2240.Google Scholar
  54. 54.
    B. A. Kiselev, Yu. N. Kozlov, and V. B. Evstigneev,Dokl. Akad. Nauk. SSSR,226 (1976) 210–213.Google Scholar
  55. 55.
    B. A. Kiselev, Yu. N. Kozlov, and V. B. Evstigneev,Biofizika,15 (1970) 594–601.Google Scholar
  56. 56.
    J. J. Hopfield,Proc. Natl. Acad. Sci. U.S.A.,71 (1974) 3640–3644.Google Scholar
  57. 57.
    M. J. Potasek and J. J. Hopfield,Proc. Natl. Acad. Sci. U.S.A.,74 (1977) 229–233.Google Scholar
  58. 58.
    J. D. Fajer, C. Brune, M. S. Davis, A. Forman, and L. D. Spaulding,Proc. Natl. Acad. Sci. U.S.A.,72 (1975) 4956–4960.Google Scholar
  59. 59.
    J. Fajer, M. S. Davis, and A. Forman,Biophys. J.,17 (1977) 150a.Google Scholar
  60. 60.
    K. J. Kaufmann, K. M. Petty, P. L. Dutton, and P. M. Rentzepis,Biochem. Biophys. Res. Commun.,70 (1976) 839–845.Google Scholar
  61. 61.
    R. E. Blankenship, T. J. Schaafsma, and W. W. Parson,Biophys. J.,17 (1977) 148a.Google Scholar
  62. 62.
    A. W. H. Mau and M. Puza,Photochem. Photobiol.,25 (1977) 601–603.Google Scholar
  63. 63.
    A. A. Krasnovskii, Jr., N. N. Lebedev, and F. F. Litvin,Dokl. Akad. Nauk SSSR,216 (1974) 39–42.Google Scholar
  64. 64.
    R. E. Fenna and B. W. Matthews,Nature,258 (1975) 573–577.Google Scholar
  65. 65.
    M. R. Wasielewski, M. H. Studier, and J. J. Katz,Proc. Natl. Acad. Sci. U.S.A.,73 (1976) 4282–4286.Google Scholar
  66. 66.
    R. S. Becker and M. Kasha,J. Am. Chem. Soc.,77 (1955) 3669–3670.Google Scholar
  67. 67.
    R. S. Becker and M. Kasha, inThe Luminescence of Biological Systems (F. H. Johnson, ed.), Am. Assoc. Advan. Sci., Washington, D.C. (1955) pp. 25–45.Google Scholar
  68. 68.
    P.-S. Song, T. A. Moore, and M. Sun,Adv. Food Res.,3 Suppl (1972) 33–77.Google Scholar
  69. 69.
    P.-S. Song, T. A. Moore, W. H. Gordon III, M. Sun, and C.-N. Ou, inOrganic Scintillators in Liquid Scintillation Counting (D. L. Horrocks and C. T. Peng, eds.), Academic Press, New York (1971) pp. 521–544.Google Scholar
  70. 70.
    F. F. Litvin, R. I. Personov, and O. N. Karataev,Dokl. Akad. Nauk SSSR,188 (1969) 1169–1171.Google Scholar
  71. 71.
    S. L. Madej, S. Okajima, and E. C. Lim,J. Chem. Phys.,65, (1976) 1219–1220.Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • Vincent P. Gutschick
    • 1
  1. 1.Theoretical DivisionUniversity of California Los Alamos Scientific LaboratoryLos Alamos

Personalised recommendations