Journal of Bioenergetics and Biomembranes

, Volume 14, Issue 5–6, pp 405–424 | Cite as

Identification of the polypeptides in the cytochromeb6/f complex from spinach chloroplasts with redox-center-carrying subunits

  • Eduard Hurt
  • Günter Hauska
Research Articles


An improved procedure for the isolation of the cytochromeb6/f complex from spinach chloroplasts is reported. With this preparation up to tenfold higher plastoquinol-plastocyanin oxidoreductase activities were observed. Like the complex obtained by our previous procedure, the complex prepared by the modified way consisted of five polypeptides with apparent molecular masses of 34, 33, 23, 20, and 17 kD, which we call Ia, Ib, II, III, and IV, respectively. In addition, one to three small components with molecular masses below 6 kD were now found to be present. These polypeptides can be extracted with acidic acetone. Cytochromef, cytochromeb6, and the Rieske Fe-S protein could be purified from the isolated complex and were shown to be represented by subunits Ia + Ib, II, and III, respectively. The heterogeneity of cytochromef is not understood at present. Estimations of the stoichiometry derived from relative staining intensities with Coomassie blue and amido black gave 1:1:1:1 for the subunits Ia + Ib/II/III/IV, which is interesting in of the presence of two cytochromesb6 per cytochromef. Cytochromef titrated as a single-electron acceptor with a pH-independent midpoint potential of +339 mV between pH 6.5 and 8.3, while cytochromeb6 was heterogeneous. With the assumption of two components present in equal amounts, two one-electron transitions withEm(1)=−40 mV andEm(2)=−172 at pH 6.5 were derived. Both midpoint potentials were pH-dependent.

Key Words

Cytochromeb6/f complex heterogeneity of cytochromef isolation of cytochromef isolation of cytochromeb6 redox titration pH-dependent midpoint potential of cytochromeb6 





sodium dodecylsulfate


SDS polyacrylamide gel electrophoresis


2-(N-morpholino)ethanesulfonic acid


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Böhme, H., and Cramer, W. A. (1973).Biochim. Biophys. Acta 325 275–283.Google Scholar
  2. Böhme H., Brütsch, S., Weithmann, G., and Böger, P. (1980).Biochim. Biophys. Acta 590 248–260.Google Scholar
  3. Cabral, F., and Schatz, G. (1979).Methods Enzymol. 54 602–613.Google Scholar
  4. Cramer, W. A., and Whitmarsh, J. (1977).Annu. Rev. Plant Physiol. 28 133–172.Google Scholar
  5. Dutton, P. L. (1978).Methods Enzymol. 54 411–435.Google Scholar
  6. Engel, W. D., Schägger, H., and Von Jagow, G. (1980).Biochim. Biophys. Acta 592 211–222.Google Scholar
  7. Gellerfors, P., and Nelson, B. D. (1975).Eur. J. Biochem. 52 433–443.Google Scholar
  8. Harms, E., Rohde, W., Bosch, F., and Scholtissek, C. (1978).Virology 86 413–422.Google Scholar
  9. Hurt, E., and Hauska, G. (1981).Eur. J. Biochem. 117 591–599.Google Scholar
  10. Hurt, E., Hauska, G., and Malkin, R. (1981).FEBS Lett. 134 1–5.Google Scholar
  11. Hurt, E., and Hauska, G. (1982).Photobiochem. Photobiophys., in press.Google Scholar
  12. Koenig, B. W., Schilder, L. T. M., Tervoort, M. J., and Van Gelder, B. F. (1980).Biochim. Biophys. Acta 621 283–295.Google Scholar
  13. Krinner, M., Hauska, G., Hurt, E., and Lockau, W. (1982).Biochim. Biophys. Acta, 681 110–117.Google Scholar
  14. Lach, H. J., and Böger, P. (1977).Z. Naturforsch. Teil C 32 877–879.Google Scholar
  15. Laemmli, U. K. (1970).Nature (London) 227 680–685.Google Scholar
  16. Marres, C. A. M., and Slater, E. C. (1977)Biochim. Biophys. Acta 462 531–548.Google Scholar
  17. Merril, C. R., Goldman, D., Sedman, S. A., and Ebert, M. H. (1981).Science 211 1437–1438.Google Scholar
  18. Mitchell, P. (1975).FEBS Lett. 59 137–139.Google Scholar
  19. Nelson, B. D., and Gellerfors, P. (1974).Biochim. Biophys. Acta 357 358–364.Google Scholar
  20. Nelson, N., and Neumann, J. (1972).J. Biol. Chem. 247 1817–1824.Google Scholar
  21. Oakley, B. R., Kirsch, D. R., and Morris, N. R. (1980).Anal. Biochem. 105 361–363.Google Scholar
  22. Ouchterlony, O. (1962).Prog. Allergy 6 30–154.Google Scholar
  23. Prince, R. C., Matsuura, K., Hurt, E., Hauska, G., and Dutton, P. L. (1982).J. Biol. Chem.,257 3379–3381.Google Scholar
  24. Rich, P. R., and Bendall, D. S. (1981).Biochim. Biophys. Acta 591 153–161.Google Scholar
  25. Rieske, J. S. (1967).Methods Enzymol. 10 488–493.Google Scholar
  26. Siedow, J. N., Power, S., De la Rosa, F. F., and Palmer, G. (1978).J. Biol. Chem. 253 2392–2399.Google Scholar
  27. Stuart, A. L., and Wasserman, A. R. (1975).Biochem. Biophys. Acta 376 561–572.Google Scholar
  28. Takabe, T., Niwa, S., Ishikawa, H., and Takenaka, K. (1980).J. Biochem. 88 1167–1176.Google Scholar
  29. Thomas, P. E., Ryan, D., and Wayne, L. (1976).Anal. Biochem. 75 168–176.Google Scholar
  30. Tombs, M. P. (1966).Anal Biochem. 13 121–132.Google Scholar
  31. Von Jagow, G., Engel, W. D., and Schägger, H. (1981). InVectorial Reactions in Electron and Ion Transport in Mitochondrial and Bacteria (Palmieri, F., Quagliarello, E., Siliprandi, N., and Slater, E. C., eds.), Vol. 5, Elsevier/North Holland Biomedical Press, Amsterdam, pp. 149–161.Google Scholar
  32. Wang, C. A., and King, T. E. (1982).Biochem. Biophys. Res. Commun. 104 591–596.Google Scholar
  33. Weiss, H., and Kolb, H. J. (1979).Eur. J. Biochem. 99 139–149.Google Scholar
  34. Yu, C. A., Yu, L., and King, T. E. (1974).J. Biol. Chem. 249 4905–4910.Google Scholar
  35. Yu, C. A., Yu, L., and King, T. E. (1975).Biochem. Biophys. Res. Commun. 66 1194–1200.Google Scholar
  36. Yu, C. A., and Yu, L. (1981).Biochim. Biophys. Acta 639 99–128.Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • Eduard Hurt
    • 1
  • Günter Hauska
    • 1
  1. 1.Institut für BotanikUniversität RegensburgGermany

Personalised recommendations