Skip to main content
Log in

Mitochondrial oscillation and activation of H+/cation exchange

  • Research Articles
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Mitochondria incubated aerobically in the presence of tetrapropylammonium and weak acids and in the presence of trace amounts of tetraphenylboron undergo a series of damped oscillations reflecting cycles of osmotic swelling and shrinkage. The matrix volume changes are consequent to transport of tetrapropylammonium catalytically stimulated by tetraphenylboron. The amplitude and frequency of the oscillations increase with the concentration of tetrapropylammonium, as required for critical rates and extents of ion influx. Addition of bovine serum albumin abolishes both the uptake of tetrapropylammonium and the oscillations. Volume oscillations are paralleled by cyclic activation and depression of the respiratory rate. Two lines of evidence suggest that the train of damped oscillations depends on the cyclic activation of an electroneutral exchange of H+ with organic cations rather than on cyclic uncoupling. First, further increase of cation permeability due to a pulse of tetraphenylboron, after initiation of cation efflux, restores cation influx. Second, addition of Mg2+, which abolishes the oscillations, has a much more marked inhibitory effect on the process of cation efflux than on cation influx. Conversely, addition of A23187, which removes membrane-bound Mg2+, promotes cation efflux and thus the oscillations. It is suggested that, in the present system, stretching of the inner membrane and Mg2+ depletion result in activation of an electroneutral H+/organic cation exchange, and that cyclic activation of this reaction results in damped oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Åkerman, K. E. O., and Wikström, M. K. (1976).FEBS Lett. 68 191–197.

    Google Scholar 

  • Altendorf, K., Hirata, H., and Harold, F.M. (1975).J. Biol. Chem. 250 1405–1412.

    Google Scholar 

  • Azzone, G. F., and Massari, S. (1973).Biochim. Biophys. Acta 301 195–226.

    Google Scholar 

  • Azzone, G. F., Massari, S., and Pozzan, T. (1976a).Biochim. Biophys. Acta 423 15–26.

    Google Scholar 

  • Azzone, G. F., Massari, S., and Pozzan, T. (1976b).Biochim. Biophys. Acta 423 27–41.

    Google Scholar 

  • Azzone, G. F., Bortolotto, F., and Zanotti, A. (1978a).FEBS Lett. 96 135–140.

    Google Scholar 

  • Azzone, G. F., Zanotti, A., and Colonna, R. (1978b).FEBS Lett. 96 140–147.

    Google Scholar 

  • Bakeeva, L. E., Grinius, L. L., Jasaitis, A. A., Kuliene, V. V., Levitsky, D. O., Liberman, E. A., Severina, I. I., and Skulachev, V. P. (1970).Biochim. Biophys. Acta 216 13–21.

    Google Scholar 

  • Bernardi, P., and Azzone, G. F. (1980). InEuropean Bioenergetics Conference Reports, Patron Ed., Bologna, pp. 315–316.

    Google Scholar 

  • Bernardi, P., and Azzone, G. F. (1981).J. Biol. Chem. 256 7187–7192.

    Google Scholar 

  • Bernardi, P., and Pietrobon, D. (1982).FEBS Lett. 139 9–12.

    Google Scholar 

  • Brierley, G. P. (1976).Mol. Cell. Biochem. 10 41–62.

    Google Scholar 

  • Chance, B., and Yoshioka, T. (1966).Arch. Biochem. Biophys. 117 381–393.

    Google Scholar 

  • Chavez, E., Jung, D. W., and Brierley, G. P. (1977).Arch. Biochem. Biophys. 183 460–470.

    Google Scholar 

  • Chay, T. R. (1981).Proc. Natl. Acad. Sci. 78 2204–2207.

    Google Scholar 

  • Dordick, R. S., Brierley, G. P., and Garlid, K. D. (1980).J. Biol. Chem. 255 10299–10305.

    Google Scholar 

  • Douglas, M. G., and Cockrell, R. S. (1974).J. Biol. Chem. 249 5464–5471.

    Google Scholar 

  • Duszynski, J., and Wojtczak, L. (1977).Biochem. Biophys. Res. Commun. 74 417–424.

    Google Scholar 

  • Garlid, K. D. (1978).Biochem. Biophys. Res. Commun. 83 1450–1455.

    Google Scholar 

  • Garlid, K. D. (1979).Biochem. Biophys. Res. Commun. 87 842–847.

    Google Scholar 

  • Garlid, K. D. (1980).J. Biol. Chem. 256 11273–11279.

    Google Scholar 

  • Gooch, V. D., and Packer, L. (1974).Biochim. Biophys. Acta 246 245–260.

    Google Scholar 

  • Graven, S. N., Lardy, H. A., and Rutter, A. (1966).Biochemistry 5 1735–1742.

    Google Scholar 

  • Grinius, L. L., Jasaitis, A. A., Kadziauskas, Y. P., Liberman, E. A., Skulachev, V. P., Topali, V. P., Tsofina, V. P., and Vladimirova, M. A. (1970).Biochim. Biophys. Acta 216 1–12.

    Google Scholar 

  • Heaton, G. F., and Nicholls, D. G. (1976).Biochem. J. 156 635–646.

    Google Scholar 

  • Hirata, H., Altendorf, K., and Harold, F. M. (1973).Proc. Natl. Acad. Sci. 70 1804–1808.

    Google Scholar 

  • Hofer, M., and Pressman, B. C. (1966).Biochemistry 5 3919–3925.

    Google Scholar 

  • Jacobs, E. E., and Sanadi, D. R. (1960).J. Biol. Chem. 235 531–534.

    Google Scholar 

  • Jung, D. W., Chavez, E., and Brierley, G. P. (1977).Arch. Biochem. Biophys. 183 452–459.

    Google Scholar 

  • Liberman, E. A., and Skulachev, V. P. (1970).Biochim. Biophys. Acta 216 30–42.

    Google Scholar 

  • Lombardi, F. J., Reeves, J. P., Short, S. A., and Kaback, H. R. (1974).Ann. N.Y. Acad. Sci. 227 312–327.

    Google Scholar 

  • Massari, S., Balboni, E., and Azzone, G. F. (1972a).Biochim. Biophys. Acta 283 16–22.

    Google Scholar 

  • Massari, S., Frigeri, L., and Azzone, G. F. (1972b).J. Membr. Biol. 9 57–70.

    Google Scholar 

  • Massari, S., Frigeri, L., and Azzone, G. F. (1972c).J. Membr. Biol. 9 71–82.

    Google Scholar 

  • Mitchell, P. (1966).Biol. Rev. 41 445–501

    Google Scholar 

  • Packer, L., Utsumi, K., and Mustafa, M. G. (1966).Arch. Biochem. Biophys. 117 381–393.

    Google Scholar 

  • Reed, P. W., and Lardy, H. A. (1972).J. Biol. Chem. 247 6970–6977.

    Google Scholar 

  • Schuldiner, S., and Kaback, H. R. (1975).Biochemistry 14 5451–5461.

    Google Scholar 

  • Shi, G. Y., Young, D. W., Garlid, K. D., and Brierley, G. P. (1980).J. Biol. Chem. 255 10306–10311.

    Google Scholar 

  • Utsumi, K., and Packer, L. (1966).Arch. Biochem. Biophys. 120 404–412.

    Google Scholar 

  • Wehrle, J. P., Jurkowitz, M., Scott, K. M., and Brierley, G. P. (1976).Arch. Biochem. Biophys. 174 312–323.

    Google Scholar 

  • Zanotti, A., and Azzone, G. F. (1980).Arch. Biochem. Biophys. 201 255–265.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernardi, P., Pozzan, M. & Azzone, G.F. Mitochondrial oscillation and activation of H+/cation exchange. J Bioenerg Biomembr 14, 387–403 (1982). https://doi.org/10.1007/BF00743066

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00743066

Key Words

Navigation