Journal of Bioenergetics and Biomembranes

, Volume 16, Issue 2, pp 115–141 | Cite as

Steady-state kinetics of the overall oxidative phosphorylation reaction in heart mitochondria. Determination of the coupling relationships between the respiratory reactions and miscellaneous observations concerning rate-limiting steps

  • Clinton D. Stoner
Research Articles

Abstract

The linear sequence of steps involved in the oxidation of extramitochondrial succinate by O2 in bovine heart mitochondria was examined by a steady-state kinetic method to determine whether or not freely diffusible intermediates occur between the various inhibitor-sensitive steps. The kinetic method is based on the facts (1) that if two inhibitor-sensitive steps within a sequence are linked by a freely diffusible intermediate, inhibition of one will make the other less rate limiting in the overall reaction and thus will increase the amount of inhibitor of the other step required for half-maximal inhibition of the overall reaction, and (2) that if the two steps are not linked in this manner, inhibition of one will make the other more rate limiting and thus will decrease the amount of inhibitor of the other required for half-maximal inhibition. These two types of “coupling relationships” between steps were designated as “sequential” and “fixed,” respectively. The results indicate the existence of freely diffusible intermediates (sequential coupling relationships) between the succinate transport and succinate dehydrogenase reactions, between the succinate dehydrogenase and cytochromebc1 reactions, and between the cytochromesbc1 andaa3 reactions. Uncoupling respiration from phosphorylation results in the coupling relationship between thebc1 andaa3 reactions becoming partially fixed. This change is accompanied by marked decreases in the degrees to which thebc1 andaa3 reactions limit the overall reaction and appears to account for the large uncoupler-induced releases of inhibition at the levels of thebc1 andaa3 reactions observed previously by others. It is suggested that cytochromec is the freely diffusible intermediate between thebc1 andaa3 reactions and that the uncoupler-induced changes occur as a result of formation of functional and highly efficient supercomplexes between cytochromec and the cytochromesbc1 andaa3 complexes.

Key words

Mitochondria oxidative phosphorylation steady-state kinetics rate-limiting step coupling relationship succinoxidase specific inhibition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baum, H., Hall, G. S., Nalder, N., and Beechey, R. B. (1971). InEnergy Transduction in Respiration and Photosynthesis (Quagliariello, E., Papa, S., and Rossi, C. S., eds.), Adriatica Editrice, Bari, pp. 747–755.Google Scholar
  2. Becker, W. F., Von Jagow, G., Anke, T., and Steglich, W. (1981).FEBS Lett. 132 329–333.Google Scholar
  3. Bogucka, K., and Wojtczak, L. (1966).Biochim. Biophys. Acta 122 381–392.Google Scholar
  4. Chance, B. (1965). InOxidases and Related Redox Systems (King, T. E., Mason, H. S., and Morrison, M., eds.), Vol. 2, Wiley, New York, pp. 929–939.Google Scholar
  5. Chance, B. (1974).Ann. N.Y. Acad. Sci. 227 613–626.Google Scholar
  6. Chance, B., and Williams, G. R. (1956).Adv. Enzymol. 17 65–134.Google Scholar
  7. Chappell, J. B., and Haarhoff, K. N. (1967). InBiochemistry of Mitochondria (Slater, E. C., Kaniuga, Z., and Wojtczak, L., eds.), Academic Press, New York, pp. 75–91.Google Scholar
  8. Chappell, J. B., and Robinson, B. H. (1968).Biochem. Soc. Symp. 27 123–133.Google Scholar
  9. Chiang, Y.-L., and King, T. E. (1979).J. Biol. Chem. 254 1845–1853.Google Scholar
  10. Davis, E. J., and Blair, P. V. (1977).Biochem. Biophys. Res. Commun. 77 1017–1023.Google Scholar
  11. Davis, E. J., and Lumeng, L. (1975).J. Biol. Chem. 250 2275–2282.Google Scholar
  12. Erecińska, M., and Wilson, D. F. (1982).J. Membr. Biol. 70 1–14.Google Scholar
  13. Erecińska, M., Wilson, D. F., Sato, N., and Nicholls, P. (1972).Arch. Biochem. Biophys. 151 188–193.Google Scholar
  14. Erecińska, M., Vanderkooi, J. M., and Wilson, D. F. (1975).Arch. Biochem. Biophys. 171 108–116.Google Scholar
  15. Erecińska, M., Davis, J. S., and Wilson, D. F. (1980).J. Biol. Chem. 255 9653–9658.Google Scholar
  16. Ferguson, S. J., and Sorgato, M. C. (1982).Annu. Rev. Biochem. 51 185–217.Google Scholar
  17. Gerth, K., Irshik, H., Reichenbach, H., and Trowitzsch, W. (1980).J. Antibiot. 33 1474–1479.Google Scholar
  18. Groen, A. K., Wanders, R. J. A., Westerhoff, H. V., van der Meer, R., and Tager, J. M. (1982).J. Biol. Chem. 257 2754–2757.Google Scholar
  19. Hackenbrock, C. R. (1981).Trends Biochem. Sci. 6 151–154.Google Scholar
  20. Hansford, R. G. (1980).Curr. Top. Bioenerg. 10 217–278.Google Scholar
  21. Harris, E. J., Van Dam, K., and Pressman, B. C. (1967).Nature (London) 213 1126–1127.Google Scholar
  22. Hatefi, Y., Yagi, T., Phelps, D. C., Wong, S.-Y., Vik, S. B., and Galante, Y. M. (1982).Proc. Natl. Acad. Sci. 79 1756–1760.Google Scholar
  23. Hearon, J. Z. (1952).Physiol. Rev. 32 499–523.Google Scholar
  24. Heinrich, R., and Rapoport, T. A. (1974).Eur. J. Biochem. 42 97–105.Google Scholar
  25. Hochman, J. H., Schindler, M., Lee, J. G., and Ferguson-Miller, S. (1982).Proc. Natl. Acad. Sci. 79 6866–6870.Google Scholar
  26. Howland, J. L. (1963).Biochim. Biophys. Acta 73 667–670.Google Scholar
  27. Howland, J. L. (1968).Biochim. Biophys. Acta 153 309–311.Google Scholar
  28. Howland, J. L., Lichtman, J. W., and Settlemire, C. T. (1973).Biochim. Biophys. Acta 314 154–163.Google Scholar
  29. Jackson, J. B., Crofts, A. R., and von Stedingk, L.-V. (1968).Eur. J. Biochem. 6 41–54.Google Scholar
  30. Jacobs, E. E., and Sanadi, D. R. (1960).J. Biol. Chem. 235 531–534.Google Scholar
  31. Jacobus, W. E., Moreadith, R. W., and Vandegaer, K. M. (1982).J. Biol. Chem. 257 2397–2402.Google Scholar
  32. Jung, D. W., Chavez, E., and Brierley, G. P. (1977).Arch. Biochem. Biophys. 183 452–459.Google Scholar
  33. Kacser, H., and Burns, J. A. (1973).Symp. Soc. Exp. Biol. 27 65–104.Google Scholar
  34. Kacser, H., and Burns, J. A. (1979).Biochem. Soc. Trans. 7 1149–1160.Google Scholar
  35. Kayalar, C., Rosing, J., and Boyer, P. D. (1976).Biochem. Biophys. Res. Commun. 72 1153–1159.Google Scholar
  36. Klingenberg, M., and Kröger, A. (1970). InElectron Transport and Energy Conservation (Tager, J. M., Papa, S., Qualiariello, E., and Slater, E. C., eds.), Adriatica Editrice, Bari, pp. 135–143.Google Scholar
  37. Kröger, A., and Klingenberg, M. (1970).Vitam. Horm. 28 533–574.Google Scholar
  38. Kröger, A., and Klingenberg, M. (1973).Eur. J. Biochem. 39 313–323.Google Scholar
  39. Küster, U., Bohnensack, R., and Kunz, W. (1976).Biochim. Biophys. Acta 440 391–402.Google Scholar
  40. La Noue, K. F., and Schoolwerth, A. C. (1979).Annu. Rev. Biochem. 48 871–922.Google Scholar
  41. Meinhardt, S. W., and Crofts, A. R. (1982).FEBS Lett. 149 217–222.Google Scholar
  42. Mitchell, P. (1966).Biol. Rev. 41 445–502.Google Scholar
  43. Mitchell, P. (1976).J. Theor. Biol. 62 327–367.Google Scholar
  44. Mitchell, P., and Moyle, J. (1970). InElectron Transport and Energy Conservation (Tager, J. M., Papa, S., Quagliariello, E., and Slater, E. C., eds.), Adriatica Editrice, Bari, pp. 575–587.Google Scholar
  45. Mowery, P. C., Steenkamp, D. J., Ackrell, B. A. C., Singer, T. P., and White, G. A. (1977).Arch. Biochem. Biophys. 178 495–506.Google Scholar
  46. Newsholme, E. A., and Crabtree, B. (1979).J. Mol. Cell. Cardiol. 11 839–856.Google Scholar
  47. Nicholls, D. G., and Lindberg, O. (1972).FEBS Lett. 25 61–64.Google Scholar
  48. Nicholls, P. (1976).Biochim. Biophys. Acta 430 30–45.Google Scholar
  49. Nicholls, P., and Kimelberg, H. K. (1968).Biochim. Biophys. Acta 162 11–21.Google Scholar
  50. Nicholls, P., and Kimelberg, H. K. (1972). InBiochemistry and Biophysics of Mitochondrial Membranes (Azzone, G. F., Carafoli, E., Lehninger, A. L., Quagliariello, E., and Siliprandi, N., eds.), Academic Press, New York, pp. 17–32.Google Scholar
  51. Nijs, P. (1967).Biochim. Biophys. Acta 143 454–461.Google Scholar
  52. Owen, C. S., and Wilson, D. F. (1974).Arch. Biochem. Biophys. 161 581–591.Google Scholar
  53. Padan, E., and Rottenberg, H. (1973).Eur. J. Biochem. 40 431–437.Google Scholar
  54. Palmieri, F., and Klingenberg, M. (1967).Eur. J. Biochem. 1 439–446.Google Scholar
  55. Palmieri, F., Prezioso, G., Quagliariello, E., and Klingenberg, M. (1971).Eur. J. Biochem. 22 66–74.Google Scholar
  56. Papa, S., Lofrumento, N. E., Paradies, G., and Quagliariello, E. (1969).Biochim. Biophys. Acta 180 35–44.Google Scholar
  57. Quagliariello, E., and Palmieri, F. (1968).Eur. J. Biochem. 4 20–27.Google Scholar
  58. Ramsey, R. R., Ackrell, B. A. C., Coles, C. J., Singer, T. P., White, G. A., and Thorn, G. D. (1981).Proc. Natl. Acad. Sci. 78 825–828.Google Scholar
  59. Rieder, R., and Bosshard, H. R. (1980).J. Biol. Chem. 255 4732–4739.Google Scholar
  60. Roberts, H., and Hess, B. (1977).Biochim. Biophys. Acta 462 215–234.Google Scholar
  61. Schatz, G., and Racker, E. (1966).J. Biol. Chem. 241 1429–1438.Google Scholar
  62. Schneider, H., Lemasters, J. J., Höchli, M., and Hackenbrock, C. R. (1980).J. Biol. Chem. 255 3748–3756.Google Scholar
  63. Schuster, S. M., Reinhart, G. D., and Lardy, H. A. (1977).J. Biol. Chem. 252 427–432.Google Scholar
  64. Smith, L., Davies, H. C., Reichlin, M., and Margoliash, E. (1973).J. Biol. Chem. 248 237–243.Google Scholar
  65. Sowers, A. E., and Hackenbrock, C. R. (1981).Proc. Natl. Acad. Sci. 78 6246–6250.Google Scholar
  66. Speck, S. H., Ferguson-Miller, S., Osheroff, N., and Margoliash, E. (1979).Proc. Natl. Acad. Sci. 76 155–159.Google Scholar
  67. Stannard, J. N., and Horecker, B. L. (1948).J. Biol. Chem. 172 599–608.Google Scholar
  68. Stoner, C. D., and Sirak, H. D. (1973).J. Cell Biol. 56 51–64.Google Scholar
  69. Stoner, C. D., and Sirak, H. D. (1979).J. Bioenerg. Biomembr. 11 113–146.Google Scholar
  70. Strong, F. M., Dickie, J. P., Loomans, M. E., van Tamelen, E. E., and Dewey, R. S. (1960).J. Am. Chem. Soc. 82 1513–1514.Google Scholar
  71. Thierbach, G., and Reichenbach, H. (1981).Biochim. Biophys. Acta 638 282–289.Google Scholar
  72. Trumpower, B. L., and Haggerty, J. G. (1980).J. Bioenerg. Biomembr. 12 151–164.Google Scholar
  73. Vignais, P. V., and Lauquin, G. J. M. (1979).Trends Biochem. Sci. 4 90–92.Google Scholar
  74. Waley, S. G. (1964).Biochem. J. 91 514–517.Google Scholar
  75. Wever, R., Muijsers, A. O., and Van Gelder, B. F. (1973).Biochim. Biophys. Acta 325 8–15.Google Scholar
  76. White, G. A. (1971).Biochem. Biophys. Res. Commun. 44 1212–1219.Google Scholar
  77. White, G. A., and Thorn, G. D. (1975).Pesticide Biochem. Physiol. 5 380–395.Google Scholar
  78. Williamson, J. R. (1979).Annu. Rev. Physiol. 41 485–506.Google Scholar
  79. Wilson, D. F. (1980). InMembrane Structure and Function (Bittar, E. E., ed.), Vol. 1, Wiley, New York, pp. 153–195.Google Scholar
  80. Wilson, D. F., and Brooks, E. (1970).Biochemistry 9 1090–1094.Google Scholar
  81. Wilson, D. F., and Chance, B. (1967).Biochim. Biophys. Acta 131 421–430.Google Scholar
  82. Wilson, D. F., and Fairs, K. (1974).Arch. Biochem. Biophys. 163 491–497.Google Scholar
  83. Wilson, D. F., and Erecińska, M., and Brocklehurst, E. S. (1972).Arch. Biochem. Biophys. 151 180–187.Google Scholar
  84. Wilson, D. F., Dutton, P. L., and Wagner, M. (1973).Curr. Top. Bioenerg. 5 233–265.Google Scholar
  85. Wilson, D. F., Stubbs, M., Veech, R. L., Erecińska, M., and Krebs, H. A. (1974).Biochem. J. 140 57–64.Google Scholar
  86. Wilson, D. F., Owen, C. S., and Holian, A. (1977).Arch. Biochem. Biophys. 182 749–762.Google Scholar
  87. Wohlrab, H. (1970).Biochemistry 9 474–479.Google Scholar
  88. Zoratti, M., Pietrobon, D., and Azzone, G. F. (1982).Eur. J. Biochem. 126 443–451.Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • Clinton D. Stoner
    • 1
  1. 1.Department of Surgery, College of MedicineOhio State UniversityColumbus

Personalised recommendations