Skip to main content
Log in

Steady-state kinetics of the overall oxidative phosphorylation reaction in heart mitochondria. Determination of the coupling relationships between the respiratory reactions and miscellaneous observations concerning rate-limiting steps

  • Research Articles
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The linear sequence of steps involved in the oxidation of extramitochondrial succinate by O2 in bovine heart mitochondria was examined by a steady-state kinetic method to determine whether or not freely diffusible intermediates occur between the various inhibitor-sensitive steps. The kinetic method is based on the facts (1) that if two inhibitor-sensitive steps within a sequence are linked by a freely diffusible intermediate, inhibition of one will make the other less rate limiting in the overall reaction and thus will increase the amount of inhibitor of the other step required for half-maximal inhibition of the overall reaction, and (2) that if the two steps are not linked in this manner, inhibition of one will make the other more rate limiting and thus will decrease the amount of inhibitor of the other required for half-maximal inhibition. These two types of “coupling relationships” between steps were designated as “sequential” and “fixed,” respectively. The results indicate the existence of freely diffusible intermediates (sequential coupling relationships) between the succinate transport and succinate dehydrogenase reactions, between the succinate dehydrogenase and cytochromebc 1 reactions, and between the cytochromesbc 1 andaa 3 reactions. Uncoupling respiration from phosphorylation results in the coupling relationship between thebc 1 andaa 3 reactions becoming partially fixed. This change is accompanied by marked decreases in the degrees to which thebc 1 andaa 3 reactions limit the overall reaction and appears to account for the large uncoupler-induced releases of inhibition at the levels of thebc 1 andaa 3 reactions observed previously by others. It is suggested that cytochromec is the freely diffusible intermediate between thebc 1 andaa 3 reactions and that the uncoupler-induced changes occur as a result of formation of functional and highly efficient supercomplexes between cytochromec and the cytochromesbc 1 andaa 3 complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baum, H., Hall, G. S., Nalder, N., and Beechey, R. B. (1971). InEnergy Transduction in Respiration and Photosynthesis (Quagliariello, E., Papa, S., and Rossi, C. S., eds.), Adriatica Editrice, Bari, pp. 747–755.

    Google Scholar 

  • Becker, W. F., Von Jagow, G., Anke, T., and Steglich, W. (1981).FEBS Lett. 132 329–333.

    Google Scholar 

  • Bogucka, K., and Wojtczak, L. (1966).Biochim. Biophys. Acta 122 381–392.

    Google Scholar 

  • Chance, B. (1965). InOxidases and Related Redox Systems (King, T. E., Mason, H. S., and Morrison, M., eds.), Vol. 2, Wiley, New York, pp. 929–939.

    Google Scholar 

  • Chance, B. (1974).Ann. N.Y. Acad. Sci. 227 613–626.

    Google Scholar 

  • Chance, B., and Williams, G. R. (1956).Adv. Enzymol. 17 65–134.

    Google Scholar 

  • Chappell, J. B., and Haarhoff, K. N. (1967). InBiochemistry of Mitochondria (Slater, E. C., Kaniuga, Z., and Wojtczak, L., eds.), Academic Press, New York, pp. 75–91.

    Google Scholar 

  • Chappell, J. B., and Robinson, B. H. (1968).Biochem. Soc. Symp. 27 123–133.

    Google Scholar 

  • Chiang, Y.-L., and King, T. E. (1979).J. Biol. Chem. 254 1845–1853.

    Google Scholar 

  • Davis, E. J., and Blair, P. V. (1977).Biochem. Biophys. Res. Commun. 77 1017–1023.

    Google Scholar 

  • Davis, E. J., and Lumeng, L. (1975).J. Biol. Chem. 250 2275–2282.

    Google Scholar 

  • Erecińska, M., and Wilson, D. F. (1982).J. Membr. Biol. 70 1–14.

    Google Scholar 

  • Erecińska, M., Wilson, D. F., Sato, N., and Nicholls, P. (1972).Arch. Biochem. Biophys. 151 188–193.

    Google Scholar 

  • Erecińska, M., Vanderkooi, J. M., and Wilson, D. F. (1975).Arch. Biochem. Biophys. 171 108–116.

    Google Scholar 

  • Erecińska, M., Davis, J. S., and Wilson, D. F. (1980).J. Biol. Chem. 255 9653–9658.

    Google Scholar 

  • Ferguson, S. J., and Sorgato, M. C. (1982).Annu. Rev. Biochem. 51 185–217.

    Google Scholar 

  • Gerth, K., Irshik, H., Reichenbach, H., and Trowitzsch, W. (1980).J. Antibiot. 33 1474–1479.

    Google Scholar 

  • Groen, A. K., Wanders, R. J. A., Westerhoff, H. V., van der Meer, R., and Tager, J. M. (1982).J. Biol. Chem. 257 2754–2757.

    Google Scholar 

  • Hackenbrock, C. R. (1981).Trends Biochem. Sci. 6 151–154.

    Google Scholar 

  • Hansford, R. G. (1980).Curr. Top. Bioenerg. 10 217–278.

    Google Scholar 

  • Harris, E. J., Van Dam, K., and Pressman, B. C. (1967).Nature (London) 213 1126–1127.

    Google Scholar 

  • Hatefi, Y., Yagi, T., Phelps, D. C., Wong, S.-Y., Vik, S. B., and Galante, Y. M. (1982).Proc. Natl. Acad. Sci. 79 1756–1760.

    Google Scholar 

  • Hearon, J. Z. (1952).Physiol. Rev. 32 499–523.

    Google Scholar 

  • Heinrich, R., and Rapoport, T. A. (1974).Eur. J. Biochem. 42 97–105.

    Google Scholar 

  • Hochman, J. H., Schindler, M., Lee, J. G., and Ferguson-Miller, S. (1982).Proc. Natl. Acad. Sci. 79 6866–6870.

    Google Scholar 

  • Howland, J. L. (1963).Biochim. Biophys. Acta 73 667–670.

    Google Scholar 

  • Howland, J. L. (1968).Biochim. Biophys. Acta 153 309–311.

    Google Scholar 

  • Howland, J. L., Lichtman, J. W., and Settlemire, C. T. (1973).Biochim. Biophys. Acta 314 154–163.

    Google Scholar 

  • Jackson, J. B., Crofts, A. R., and von Stedingk, L.-V. (1968).Eur. J. Biochem. 6 41–54.

    Google Scholar 

  • Jacobs, E. E., and Sanadi, D. R. (1960).J. Biol. Chem. 235 531–534.

    Google Scholar 

  • Jacobus, W. E., Moreadith, R. W., and Vandegaer, K. M. (1982).J. Biol. Chem. 257 2397–2402.

    Google Scholar 

  • Jung, D. W., Chavez, E., and Brierley, G. P. (1977).Arch. Biochem. Biophys. 183 452–459.

    Google Scholar 

  • Kacser, H., and Burns, J. A. (1973).Symp. Soc. Exp. Biol. 27 65–104.

    Google Scholar 

  • Kacser, H., and Burns, J. A. (1979).Biochem. Soc. Trans. 7 1149–1160.

    Google Scholar 

  • Kayalar, C., Rosing, J., and Boyer, P. D. (1976).Biochem. Biophys. Res. Commun. 72 1153–1159.

    Google Scholar 

  • Klingenberg, M., and Kröger, A. (1970). InElectron Transport and Energy Conservation (Tager, J. M., Papa, S., Qualiariello, E., and Slater, E. C., eds.), Adriatica Editrice, Bari, pp. 135–143.

    Google Scholar 

  • Kröger, A., and Klingenberg, M. (1970).Vitam. Horm. 28 533–574.

    Google Scholar 

  • Kröger, A., and Klingenberg, M. (1973).Eur. J. Biochem. 39 313–323.

    Google Scholar 

  • Küster, U., Bohnensack, R., and Kunz, W. (1976).Biochim. Biophys. Acta 440 391–402.

    Google Scholar 

  • La Noue, K. F., and Schoolwerth, A. C. (1979).Annu. Rev. Biochem. 48 871–922.

    Google Scholar 

  • Meinhardt, S. W., and Crofts, A. R. (1982).FEBS Lett. 149 217–222.

    Google Scholar 

  • Mitchell, P. (1966).Biol. Rev. 41 445–502.

    Google Scholar 

  • Mitchell, P. (1976).J. Theor. Biol. 62 327–367.

    Google Scholar 

  • Mitchell, P., and Moyle, J. (1970). InElectron Transport and Energy Conservation (Tager, J. M., Papa, S., Quagliariello, E., and Slater, E. C., eds.), Adriatica Editrice, Bari, pp. 575–587.

    Google Scholar 

  • Mowery, P. C., Steenkamp, D. J., Ackrell, B. A. C., Singer, T. P., and White, G. A. (1977).Arch. Biochem. Biophys. 178 495–506.

    Google Scholar 

  • Newsholme, E. A., and Crabtree, B. (1979).J. Mol. Cell. Cardiol. 11 839–856.

    Google Scholar 

  • Nicholls, D. G., and Lindberg, O. (1972).FEBS Lett. 25 61–64.

    Google Scholar 

  • Nicholls, P. (1976).Biochim. Biophys. Acta 430 30–45.

    Google Scholar 

  • Nicholls, P., and Kimelberg, H. K. (1968).Biochim. Biophys. Acta 162 11–21.

    Google Scholar 

  • Nicholls, P., and Kimelberg, H. K. (1972). InBiochemistry and Biophysics of Mitochondrial Membranes (Azzone, G. F., Carafoli, E., Lehninger, A. L., Quagliariello, E., and Siliprandi, N., eds.), Academic Press, New York, pp. 17–32.

    Google Scholar 

  • Nijs, P. (1967).Biochim. Biophys. Acta 143 454–461.

    Google Scholar 

  • Owen, C. S., and Wilson, D. F. (1974).Arch. Biochem. Biophys. 161 581–591.

    Google Scholar 

  • Padan, E., and Rottenberg, H. (1973).Eur. J. Biochem. 40 431–437.

    Google Scholar 

  • Palmieri, F., and Klingenberg, M. (1967).Eur. J. Biochem. 1 439–446.

    Google Scholar 

  • Palmieri, F., Prezioso, G., Quagliariello, E., and Klingenberg, M. (1971).Eur. J. Biochem. 22 66–74.

    Google Scholar 

  • Papa, S., Lofrumento, N. E., Paradies, G., and Quagliariello, E. (1969).Biochim. Biophys. Acta 180 35–44.

    Google Scholar 

  • Quagliariello, E., and Palmieri, F. (1968).Eur. J. Biochem. 4 20–27.

    Google Scholar 

  • Ramsey, R. R., Ackrell, B. A. C., Coles, C. J., Singer, T. P., White, G. A., and Thorn, G. D. (1981).Proc. Natl. Acad. Sci. 78 825–828.

    Google Scholar 

  • Rieder, R., and Bosshard, H. R. (1980).J. Biol. Chem. 255 4732–4739.

    Google Scholar 

  • Roberts, H., and Hess, B. (1977).Biochim. Biophys. Acta 462 215–234.

    Google Scholar 

  • Schatz, G., and Racker, E. (1966).J. Biol. Chem. 241 1429–1438.

    Google Scholar 

  • Schneider, H., Lemasters, J. J., Höchli, M., and Hackenbrock, C. R. (1980).J. Biol. Chem. 255 3748–3756.

    Google Scholar 

  • Schuster, S. M., Reinhart, G. D., and Lardy, H. A. (1977).J. Biol. Chem. 252 427–432.

    Google Scholar 

  • Smith, L., Davies, H. C., Reichlin, M., and Margoliash, E. (1973).J. Biol. Chem. 248 237–243.

    Google Scholar 

  • Sowers, A. E., and Hackenbrock, C. R. (1981).Proc. Natl. Acad. Sci. 78 6246–6250.

    Google Scholar 

  • Speck, S. H., Ferguson-Miller, S., Osheroff, N., and Margoliash, E. (1979).Proc. Natl. Acad. Sci. 76 155–159.

    Google Scholar 

  • Stannard, J. N., and Horecker, B. L. (1948).J. Biol. Chem. 172 599–608.

    Google Scholar 

  • Stoner, C. D., and Sirak, H. D. (1973).J. Cell Biol. 56 51–64.

    Google Scholar 

  • Stoner, C. D., and Sirak, H. D. (1979).J. Bioenerg. Biomembr. 11 113–146.

    Google Scholar 

  • Strong, F. M., Dickie, J. P., Loomans, M. E., van Tamelen, E. E., and Dewey, R. S. (1960).J. Am. Chem. Soc. 82 1513–1514.

    Google Scholar 

  • Thierbach, G., and Reichenbach, H. (1981).Biochim. Biophys. Acta 638 282–289.

    Google Scholar 

  • Trumpower, B. L., and Haggerty, J. G. (1980).J. Bioenerg. Biomembr. 12 151–164.

    Google Scholar 

  • Vignais, P. V., and Lauquin, G. J. M. (1979).Trends Biochem. Sci. 4 90–92.

    Google Scholar 

  • Waley, S. G. (1964).Biochem. J. 91 514–517.

    Google Scholar 

  • Wever, R., Muijsers, A. O., and Van Gelder, B. F. (1973).Biochim. Biophys. Acta 325 8–15.

    Google Scholar 

  • White, G. A. (1971).Biochem. Biophys. Res. Commun. 44 1212–1219.

    Google Scholar 

  • White, G. A., and Thorn, G. D. (1975).Pesticide Biochem. Physiol. 5 380–395.

    Google Scholar 

  • Williamson, J. R. (1979).Annu. Rev. Physiol. 41 485–506.

    Google Scholar 

  • Wilson, D. F. (1980). InMembrane Structure and Function (Bittar, E. E., ed.), Vol. 1, Wiley, New York, pp. 153–195.

    Google Scholar 

  • Wilson, D. F., and Brooks, E. (1970).Biochemistry 9 1090–1094.

    Google Scholar 

  • Wilson, D. F., and Chance, B. (1967).Biochim. Biophys. Acta 131 421–430.

    Google Scholar 

  • Wilson, D. F., and Fairs, K. (1974).Arch. Biochem. Biophys. 163 491–497.

    Google Scholar 

  • Wilson, D. F., and Erecińska, M., and Brocklehurst, E. S. (1972).Arch. Biochem. Biophys. 151 180–187.

    Google Scholar 

  • Wilson, D. F., Dutton, P. L., and Wagner, M. (1973).Curr. Top. Bioenerg. 5 233–265.

    Google Scholar 

  • Wilson, D. F., Stubbs, M., Veech, R. L., Erecińska, M., and Krebs, H. A. (1974).Biochem. J. 140 57–64.

    Google Scholar 

  • Wilson, D. F., Owen, C. S., and Holian, A. (1977).Arch. Biochem. Biophys. 182 749–762.

    Google Scholar 

  • Wohlrab, H. (1970).Biochemistry 9 474–479.

    Google Scholar 

  • Zoratti, M., Pietrobon, D., and Azzone, G. F. (1982).Eur. J. Biochem. 126 443–451.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoner, C.D. Steady-state kinetics of the overall oxidative phosphorylation reaction in heart mitochondria. Determination of the coupling relationships between the respiratory reactions and miscellaneous observations concerning rate-limiting steps. J Bioenerg Biomembr 16, 115–141 (1984). https://doi.org/10.1007/BF00743044

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00743044

Key words

Navigation