Cellular and Molecular Neurobiology

, Volume 6, Issue 1, pp 31–42 | Cite as

Histophotometric Evaluation of Glutamate Dehydrogenase Activity of the Rat Hippocampal Formation During Postnatal Development, with Special Reference to the Glutamate Transmitter Metabolism

  • Günther Schünzel
  • Gerald Wolf
  • Fritz Rothe
  • Eberhard Seidler
Article

Summary

  1. 1.

    Transmitter glutamate/aspartate synthesis is known to proceed along different metabolic pathways. In this light, the functional relevance of glutamate dehydrogenase in postnatally maturing glutamatergic/aspartatergic structures was studied by means of quantitative enzyme histochemistry.

     
  2. 2.

    The basic requirements concerning the kinetics and calibration of the histochemical glutamate dehydrogenase reaction used were proved to be met in order to obtain valid quantitative data.

     
  3. 3.

    The histochemically demonstrable activity of glutamate dehydrogenase (EC 1.4.1.3) in the hippocampal formation of the rat increased markedly during postnatal development. On day 30, the distribution pattern observed was similar to that in adult animals.

     
  4. 4.

    While the enzyme activity rose within cell body layers from day 0 to day 30 by 240–285%, the increase in neuropil layers was found to be up to 830%. Maximum values were seen in the stratum lacunosum-moleculare of CA1 and CA3 and the stratum moleculare of the dentate fascia on day 30.

     
  5. 5.

    Since the hippocampal neuropil is supposed to be copiously provided with glutamatergic (and aspartatergic?) structures which become functional in rats during the first weeks of postnatal life, the increase in enzyme activity is discussed to be primarily a consequence of maturing synaptic systems using glutamate and/or aspartate as transmitters.

     

Key words

glutamate dehydrogenase hippocampal formation glutamatergic transmission postnatal development histophotometric evaluation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barca, M. A., and Toledano, A. (1982). Histochemical electron microscopic study of the enzyme glutamate dehydrogenase (GD) in postnatal developing cerebellum.Cell. Mol. Biol. 28187–195.PubMedGoogle Scholar
  2. Baudry, M., and Lynch, G. (1981). Hippocampal glutamate receptors.Mol. Cell. Biochem. 385–18.PubMedCrossRefGoogle Scholar
  3. Baudry, M., Arst, D., Oliver, M., and Lynch, G. (1981). Development of glutamate binding sites and their regulation by calcium in rat hippocampus.Dev. Brain Res. 137–48.CrossRefGoogle Scholar
  4. Black, I. B., Hendry, I. A., and Iversen, L. L. (1972). Effects of surgical decentralization and nerve growth factor on the maturation of adrenergic neurons in a mouse sympathetic ganglion.J. Neurochem. 191367–1377.PubMedCrossRefGoogle Scholar
  5. Cotman, C. W., and Nadler, J. V. (1981). Glutamate and aspartate as hippocampal transmitters: Biochemical and pharmacological evidence. InGlutamate: Transmitter in the Central Nervous System (Roberts, P. J., Storm-Mathisen, J., and Johnston, G. A. R., Eds.), John Wiley, Chichester, pp. 117–154.Google Scholar
  6. Fagg, G. E., and Foster, A. C. (1983). Amino acid neurotransmitters and their pathways in the mammalian central nervous systems.Neuroscience 9701–719.PubMedCrossRefGoogle Scholar
  7. Fonnum, F. (1984). Glutamate: A neurotransmitter in mammalian brain.J. Neurochem. 421–11.PubMedCrossRefGoogle Scholar
  8. Greif, K. P., and Reichard, L. F. (1982). Appearance and distribution of neuronal cell surface and synaptic vesicle antigens in the developing rat superior cervical ganaglion.J. Neurosci. 2843–852.PubMedGoogle Scholar
  9. Hamberger, A., Chiang, G. H., Sandoval, E., and Cotman, C. W. (1979). Glutamate as a CNS transmitter. II. Regulation of synthesis in the releasable pool.Brain Res. 168531–541.PubMedCrossRefGoogle Scholar
  10. Mellgren, S. J., and Blackstad, T. W. (1967). Oxidative enzymes (Tetrazolium reductases) in the hippocampal region of the rat. Distribution and relation to architectonics.Zschr. Zellforsch. 78167–207.PubMedCrossRefGoogle Scholar
  11. Minkwitz, H.-G. (1976). Zur Entwicklung der Neuronenstruktur des Hippocampus während der prä- und postnatalen Ontogenese der Albinoratte.J. Hirnforsch. 17213–275.PubMedGoogle Scholar
  12. Nicklas, W. (1984). Amino acid metabolism in the central nervous system: Role of glutamate dehydrogenase. InThe Olivopontocerebellar Atrophies (Duvoisin, R. C., and Plaitakis, A., Eds.), Raven Press, New York, pp. 245–253.Google Scholar
  13. Pokorny, J., and Yamamoto, T. (1981). Postnatal ontogenesis of hippocampal CA1 area in rats.Brain Res. Bull. 7113–130.PubMedCrossRefGoogle Scholar
  14. Roberts, E. (1981). Strategies for identifying sources and sites of formation of GABA-precursor or transmitter glutamate in brain. InGlutamate as a Neurotransmitter, Adv. Biochem. Psychopharmacol.Vol. 27 (Di Chiara, G., and Gessa, G. L., Eds.), Raven Press, New York, pp. 91–102.Google Scholar
  15. Rothe, F., and Wolf, G. (1984). Alanine aminotransferase in the rat nervous system during postnatal development referring to the glutamate transmitter metabolism.Neurochem. Res. 9661–669.PubMedCrossRefGoogle Scholar
  16. Rothe, F., Schmidt, W., and Wolf, G. (1983). Postnatal changes in the activity of glutamate dehydrogenase and aspartate aminotransferase in the rat nervous system with special reference to the glutamate transmitter metabolism.Dev. Brain Res. 1167–74.CrossRefGoogle Scholar
  17. Schmidt, W., and Wolf, G. (1984). Histochemical localization of aspartate aminotransferase activity in the hippocampal formation and in peripheral ganglia of the rat with special reference to the glutamate transmitter metabolism.J. Hirnforsch. 25505–510.PubMedGoogle Scholar
  18. Schünzel, G., and Wolf, G. (1982). Topographic and quantitative characteristics of glutamate dehydrogenase of the hippocampus formation during the postnatal development of the rat brain. Comparative studies on succinate andα-glycerophosphate dehydrogenase with special reference to putative glutamatergic structures.Acta Histochem. 71145–151.PubMedGoogle Scholar
  19. Schünzel, G., and Seidler, E. (1984). Topochemischer Dehydrogenase-Nachweis im ZNS mit dem Nitro-Monotetrazoliumsalz p-DNTT.Acta Histochem. Suppl.-Bd. 30319–325.Google Scholar
  20. Seidler, E. (1980). New nitro-monotetrazolium salts and their use in histochemistry.Histochem. J. 12619–630.PubMedCrossRefGoogle Scholar
  21. Shank, R. P., and Aprison, M. H. (1981). Present status and significance of the glutamine cycle in neural tissues.Life Sci. 28837–842.PubMedCrossRefGoogle Scholar
  22. Shank, R. P., and Campbell, G. L. (1983). Ornithine as a precursor of glutamate and GABA: Uptake and metabolism by neuronal and glial enriched cellular material.J. Neurosci. Res. 947–58.PubMedCrossRefGoogle Scholar
  23. Smolen, A., and Raisman, G. (1980). Synapse formation in the rat superior cervical ganglion during normal development and after neonatal deafferentation.Brain Res. 181315–323.PubMedCrossRefGoogle Scholar
  24. Storm-Mathisen, J. (1981). Autoradiographic and microchemical localization of high affinity glutamate uptake. InGlutamate: Transmitter in the Central Nervous System (Roberts, P. J., Storm-Mathisen, J., and Johnston, G. A. R., Eds.), John Wiley, Chicester, pp. 89–115.Google Scholar
  25. Storm-Mathisen, J., Leknes, A. K., Bore, A. T., Vaaland, J. T., Edminson, P., Haug, F.-M. S., and Ottersen, O. P. (1983). First visualization of glutamate and GABA in neurons by immunocytochemistry.Nature (Lond.)301517–520.CrossRefGoogle Scholar
  26. Subbalakshmi, G. Y. C. V., and Murthy, Ch. R. K. (1985). Isolation of astrocytes, neurons, and synaptosomes of rat brain cortex: Distribution of enzymes of glutamate metabolism.Neurochem. Res. 10239–250.PubMedCrossRefGoogle Scholar
  27. Wenzel, J., Stender, G., and Duwe, G. (1981). Zur Entwicklung der Neuronenstruktur der Fascia dentata bei der Ratte. Neurohistologisch-morphometrische, ultrastrukturelle und experimentelle Untersuchungen.J. Hirnforsch. 22639–683.Google Scholar
  28. Wolf, G., and Keilhoff, G. (1984). Kainate and glutamate neurotoxicity in dependence on the postnatal development with special reference to hippocampal neurons.Dev. Brain Res. 1415–21.CrossRefGoogle Scholar
  29. Wolf, G., and Schmidt, W. (1983). Zinc and glutamate dehydrogenase in putative glutamatergic brain structures.Acta Histochem. 7215–23.PubMedGoogle Scholar
  30. Wolf, G., Schünzel, G., and Storm-Mathisen, J. (1984). Lesions of Schaffer's collaterals in the rat hippocampus affecting glutamate dehydrogenase and succinate dehydrogenase activity in the stratum radiatum of CA1. A study with special reference to the glutamate transmitter metabolism.J. Hirnforsch. 25249–253.PubMedGoogle Scholar
  31. Wong, P. T.-H., McGeer, E. G., and McGeer, P. L. (1981). A sensitive radiometric assay for ornithine aminotransferase: Regional and subcellular distributions in rat brain.J. Neurochem. 36501–505.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • Günther Schünzel
    • 1
  • Gerald Wolf
    • 1
  • Fritz Rothe
    • 1
  • Eberhard Seidler
    • 2
  1. 1.Institute of BiologyMedical Academy of MagdeburgMagdeburgGerman Democratic Republic
  2. 2.Institute of AnatomyHumboldt University of BerlinBerlinGerman Democratic Republic

Personalised recommendations