Combustion, Explosion and Shock Waves

, Volume 6, Issue 2, pp 175–182 | Cite as

Excitation of sodium in certain reactions behind shock waves

  • I. S. Zaslonko
  • S. M. Kogarko
  • E. V. Mozzhukhin


  1. 1.

    In the early stages of the hydrogen-oxygen reaction (less than 10% H2 depletion) the electronic excitation of Na atoms and OH radicals and the vibrational excitation of OH and H2O exceed the equilibrium values.

  2. 2.

    A comparison of the efficiency of the various sources of sodium excitation in the induction period of the H2−O2 reaction shows that the sodium is excited in collisions with OH and H2O possessing a nonequilibrium reserve of vibrational energy.

  3. 3.

    The nature of Na excitation in the systems C2H2−O2 and H2−O2 is practically the same; the excitation of Na in CH4−O2 and H2−Cl2 mixtures is equilibrium in character.



Induction Period Shock Tube Brightness Temperature Electronic Excitation Vibrational Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    V. N. Kondrat'ev, Kinetics of Chemical Gas Reactions [in Russian], Izd-vo AN SSSR, Moscow (1959).Google Scholar
  2. 2.
    A. Gaydon, Spectroscopy of Flames [Russian translation], IL, Moscow (1959).Google Scholar
  3. 3.
    N. N. Semenov and A. E. Shilov, Kinetika i kataliz, 1 (1965).Google Scholar
  4. 4.
    J. G. Clouston, A. G. Gaydon, and I. I. Glass, in: Shock Tubes [Russian translation] IL, Moscow, 416–427 (1962).Google Scholar
  5. 5.
    A. G. Gaydon, and I. R. Hurle, Proc. Roy. Soc. A,262, 38 (1961).ADSGoogle Scholar
  6. 6.
    I. R. Hurle, J. Chem. Phys.,41, 3911 (1964).CrossRefGoogle Scholar
  7. 7.
    W. Starr, J. Chem. Phys.,43, 73 (1965).CrossRefGoogle Scholar
  8. 8.
    G. Karl and J. C. Polanyi, J. Chem. Phys.,30, 316 (1960).Google Scholar
  9. 9.
    A. A. Borisov, I. S. Zaslonko, and S. M. Kogarko, PMTF, 6, 104 (1964).Google Scholar
  10. 10.
    A. A. Borisov, I. S. Zaslonko, and S. M. Kogarko, FGV,4, 3, 387 (1968).Google Scholar
  11. 11.
    F. S. Faizullov, Tr. FIAN SSSR, 18, 105 (1962).Google Scholar
  12. 12.
    R. White, 5-th proceedings intern. Shock tube synep. (1965).Google Scholar
  13. 13.
    F. E.Bells and M. R. Lauer, J. Chem. Phys.,40, 415 (1964).CrossRefGoogle Scholar
  14. 14.
    H. Miyama and T. Takeyama, J. Che. Phys.,41, 2287 (1964).CrossRefGoogle Scholar
  15. 15.
    G. H. Schott and G. H. Kinsey, J. Chem. Phys.,29, 1177 (1958).CrossRefGoogle Scholar
  16. 16.
    R. Brokaw, 10th-Symposium (International) on Combustion (1964).Google Scholar
  17. 17.
    R. A. Carabetta and W. E. Kaskan, 11th Symposium International on Combustion, Pittsburgh, Pa. (1967).Google Scholar
  18. 18.
    Energy Transfer in Gases. Interscience Publishers, N. Y. (1962).Google Scholar
  19. 19.
    E. E. Nikitin, J. Quant. Spectr. Rad. Transfer, 5, 435 (1965).CrossRefGoogle Scholar
  20. 20.
    J. K. Cashion and J. C. Polanyi, J. Chem. Phys.,29, 455 (1958).CrossRefGoogle Scholar
  21. 21.
    A. A. Borisov, S. M. Kogarko, and G. I. Skachkov, FGV,2, 2 (1966).Google Scholar
  22. 22.
    H. Miyama and T. Takeyama, J. Chem. Phys.40, 2049 (1964).CrossRefGoogle Scholar

Copyright information

© Consultants Bureau 1972

Authors and Affiliations

  • I. S. Zaslonko
  • S. M. Kogarko
  • E. V. Mozzhukhin

There are no affiliations available

Personalised recommendations