Skip to main content

Advertisement

Log in

Relation between rate constants of opposite reaction directions

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Conclusions

  1. 1.

    The concept of rate constants (coefficients) of mutually reversible reaction directions in an ideal gas (or in an ideal solution) and the question of their connection with the equilibrium constant are quite meaningful upon compliance with the following two respective conditions: a) the progress of the reaction in each of the two directions is such that the rate of change in the concentration of intermediate products is low in comparison to the reaction rate, and b) the reaction occurs in a medium whose state is either in or sufficiently close to thermodynamic equilibrium. Under the conditions mentioned, the ratio between the rate constants (coefficients) of the two reaction directions equals its equilibrium constant calculated at the temperature of the medium. This regularity is intrinsic not only to the single-stage but also to complex multistage reactions.

  2. 2.

    The ratio between the rate constants (coefficients) of mutually reverse reaction directions in a spatially homogeneous medium whose state is characterized by two different subsystem temperatures (T1 and T2), equals the “constant” K(T1T2) characterizing the equilibrium of the reaction in such a not completely equilibrium medium.

  3. 3.

    If the equilibrium of the medium is substantially spoiled during the reaction itself, then the state of the medium depends (not only in quantitative but also in qualitative respects) on the direction of the reaction in the general case. Hence, the ratio between the reaction rate constants (coefficients) is already not a thermodynamic characteristic of the medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. O. K. Rice, J. Phys. Chem.,67, No. 7, 1733 (1965).

    Google Scholar 

  2. N. S. Snider, J. Chem. Phys.,42, No. 2, 548 (1965).

    Google Scholar 

  3. A. I. Osipov, Teor. i Éksp. Khim,2, No. 5, 649 (1966).

    Google Scholar 

  4. E. V. Stupochenko and M. N. Safaryan, Teor. i Éksp. Khim.,2, No. 6 783 (1966).

    Google Scholar 

  5. Yu. L. Klimontovich, Zh. Éksp. Teor. Fiz.,52, No. 5, 1233 (1967).

    Google Scholar 

  6. L. M. Biberman, V. S. Vorob'ev, and I. T. Yakubov, Zh. Éksp. Teor. Fiz.,56, No. 6, 1992 (1969).

    Google Scholar 

  7. V. N. Kondrat'ev, Kinetics of Chemical Gas Reactions [in Russian] Izd. AN SSSR, Moscow (1958).

    Google Scholar 

  8. S. R. Byron, J. Chem. Phys.,44, No. 4, 1378 (1966).

    Google Scholar 

  9. D. C. Hardy and B. S. Rabinowitch, J. Chem. Phys.,48, 1282 (1968).

    Google Scholar 

  10. J. H. Kiefer, J. Chem. Phys.,57, No. 5, 1938 (1972).

    Google Scholar 

  11. Yu. P. Denisov and N. M. Kuznetsov, Zh. Prikl. Mekh. i Tekh. Fiz., No. 2, 32 (1971).

    Google Scholar 

  12. E. E. Nikitin, Dokl. Akad. Nauk SSSR,119, No. 3, 526 (1958).

    Google Scholar 

  13. E. Montroll and K. E. Shuler, Advan. Chem. Phys., No. 1, 361 (1958).

    Google Scholar 

  14. B. Widom, J. Chem. Phys.,34, 2050 (1961).

    Google Scholar 

  15. A. I. Osipov and E. V. Stupchenko, Usp. Fiz. Nauk,79, No. 1, 81 (1963).

    Google Scholar 

  16. L. É. Gurevich, Principles of Physical Kinetics [in Russian], Gostekhizdat, Moscow (1940).

    Google Scholar 

  17. M. A. Leontovich, Statistical Physics [in Russian], Gostekhizdat, Moscow (1944).

    Google Scholar 

  18. H. A. Kramers, Physica,7, 284 (1940).

    Google Scholar 

  19. E. E. Nikitin, Theory of Elementary Atomic-Molecular Processes in Gases [in Russian], Khimiya, Moscow (1970).

    Google Scholar 

  20. L. P. Pitaevskii, Zh. Éksp. Teor. Fiz.,42, No. 5, 1326 (1962).

    Google Scholar 

  21. A. V. Gurevich and L. P. Pitaevskii, Zh. Éksp. Teor. Fiz.,46, No. 4, 1281 (1964).

    Google Scholar 

  22. T. Bak and J. Lesowitz, Disc. Faraday Soc.,33, 189 (1962).

    Google Scholar 

  23. T. Bak and J. Lesowitz, Phys. Rev.,131, 1138 (1963).

    Google Scholar 

  24. J. C. Keck and G. Carrier, J. Chem. Phys.,43, 2284 (1965).

    Google Scholar 

  25. S. A. Losev, Doctoral Dissertation, Institute of Mechanics, Moscow State University (1969).

  26. L. M. Biberman, V. S. Vorob'ev, and I. T. Yakubov, Usp. Fiz. Nauk,107, No. 3, 353 (1972).

    Google Scholar 

  27. F. I. Dalidchik and Yu. S. Sayasov, Zh. Éksp. Teor. Fiz.,49, No. 7, 302 (1965);52, 1592 (1967).

    Google Scholar 

  28. Yu. P. Denisov and N. M. Kuznetsov, Zh. Éksp. Teor. Fiz.,61, No. 12, 2298 (1971).

    Google Scholar 

  29. S. London and J. C. Keck, J. Chem. Phys.,48, No. 1, 374 (1968).

    Google Scholar 

  30. V. A. Abramov, Optika i Spektr.,18, No. 6, 974 (1965).

    Google Scholar 

  31. N. M. Kuznetsov, Dokl. Akad. Nauk SSSR,164, No. 5, 1097 (1965).

    Google Scholar 

  32. N. M. Kuznetsov, Teor. i Éksp. Khim.7, No. 1, 22 (1971).

    Google Scholar 

  33. A. I. Osipov, Teor. i Éksp. Khim.2, No. 5, 649 (1966).

    Google Scholar 

  34. N. A. Generalov and V. Ya. Ovechkin, Teor. i Éksp. Khim.4, No. 6, 829 (1968).

    Google Scholar 

  35. V. Ya. Ovechkin, Candidate's Dissertation, Institute of Mechanics, Moscow State University (1970).

  36. S. A. Losev and M. S. Yalovik, Khim. Vys. Énerg.4, No. 3, 202 (1970).

    Google Scholar 

  37. M. S. Yalovik, Candidate's Dissertation, Institute of Mechanics, Moscow State University (1972).

  38. V. A. Maksimenko, Candidate's Dissertation, Physics Department, Moscow State University (1972).

  39. V. L. Granovskii, Electrical Current in a Gas [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  40. Yu. M. Kagan, Spectroscopy of a Gas-Discharge Plasma [in Russian], Nauka, Leningrad (1970).

    Google Scholar 

  41. V. N. Soshnikov and V. S. Trekhov, Zh. Tekh. Fiz.,37, 1414 (1967).

    Google Scholar 

  42. A. I. Lukovnikov, E. S. Trekhov, and E. P. Fetisov, Physics of a Gas-Discharge Plasma [in Russian], No. 2, Atomizdat, Moscow (1969).

    Google Scholar 

  43. V. I. Myshenko and Yu. P. Raizer, Zh. Éksp. Teor. Fiz.,61, No. 5, 1882 (1971).

    Google Scholar 

  44. D. R. Bates, A. E. Kingston, and R. W. P. McWhirter, Proc. Roy. Soc.,A267, 297 (1962).

    Google Scholar 

  45. D. R. Bates and A. Dalgarno, in: Atomic and Molecular Processes, Academic Press (1962).

  46. D. R. Bates and S. P. Khare, Proc. Phys. Soc.,85, 231 (1965).

    Google Scholar 

  47. C. Collins, Phys. Rev.,177, No. 1, 254 (1969).

    Google Scholar 

  48. B. F. Gordiets, A. I. Osipov, et al., Usp. Fiz. Nauk,108, No. 4, 655 (1972).

    Google Scholar 

  49. M. N. Safaryan, Teor. i Éksp. Khim.8, No. 3, 322;8, No. 4, 445 (1972).

    Google Scholar 

  50. Yu. P. Denisov and N. M. Kuznetsov, Zh. Prikl. Mekh. i Tekh. Fiz., No. 3, 6 (1971).

    Google Scholar 

  51. K. Wojaczek, Beiträge Plasmaphysik,5, 3 (1965).

    Google Scholar 

  52. K. N. Ul'yanov, Teplofiz. Vys. Temp.4, No. 3, 314 (1966).

    Google Scholar 

  53. L. M. Biberman, V. S. Vorob'ev, and I. T. Yakubov, Teplofiz, Vys. Temp.,6, No. 3, 369 (1968).

    Google Scholar 

Download references

Authors

Additional information

Moscow. Translated from Fizika Goreniya i Vzryva, Vol. 9, No. 5, pp. 683–699, September–October, 1973.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsov, N.M. Relation between rate constants of opposite reaction directions. Combust Explos Shock Waves 9, 595–609 (1973). https://doi.org/10.1007/BF00742887

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00742887

Keywords

Navigation