Skip to main content
Log in

The applicability of plate wave techniques for the inspection of adhesive and diffusion bonded joints

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

The role of plate waves in the inspection of adhesive and diffusion bonded joints is examined. This involves a review of the modal techniques which have been proposed for the measurement of the adhesion and cohesion properties of adhesive joints and the presentation of some of our own studies on the detection and characterization of an unwanted layer of brittle alpha case in diffusion bonded titanium. It is concluded that Lamb waves, which occupy the whole joint, are viable in principle but are limited in both applications by their strong sensitivity to the material properties and the thicknesses of the adherends and their relative insensitivity to those of the bondline layer. On the other hand, embedded modes, which propagate along an embedded layer, are largely insensitive to the adherends, the dispersion curves showing a major improvement in sensitivity to the properties of the layer and to the boundary conditions between the layer and the adherends. The drawback is that their exploitation is limited in practice because it is difficult to excite and detect them. True modes offer good potential but require access to the ends of the joints. In attempting to excite leaky modes, minima of the reflection coefficient, commonly used to measure Lamb wave dispersion curves in immersion coupled plates, do not correspond to the dispersion curves because the acoustic impedance of the adherends is too large. Therefore, although measurement of the minima offers good potential for inspection, this is a response technique and cannot be associated directly with the plate modes. In neither of the examples studied could an interface wave exist at a single interface between the bondline layer and an adherend. However, in general such modes could be rather attractive for inspection, provided that their wavelengths are much smaller than the layer thickness, because they are sensitive to the interface region but not to the thicknesses of the layers, and they are relatively simple to measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. I. Rokhlin, Interface properties characterization by interface and Lamb waves, inReview of Progress in Quantitative NDE, Vol. 5, D. O. Thompson and D. E. Chimenti, eds. (Plenum, New York, 1986), pp. 1301–1308.

    Google Scholar 

  2. I. A. Viktorov,Rayleigh and Lamb Waves (Plenum Press, New York, 1970).

    Google Scholar 

  3. A. Pilarski, Ultrasonic evaluation of the adhesion degree in layered joints,Mater. Eval. 43:765–770 (1985).

    Google Scholar 

  4. M. J. S. Lowe and P. Cawley, Comparison of the modal properties of a stiff layer embedded in a solid medium with the minima of the plane wave reflection coefficient,J. Acoust. Soc. Am. (submitted).

  5. R. Stoneley, Elastic waves at the surface of separation of two solids,Proc. Roy. Soc. 106:416–428 (1924).

    Google Scholar 

  6. C. C. H. Guyott, P. Cawley, and R. D. Adams, The non-destructive testing of adhesively bonded structure: A review,J. Adhesion 20:129–159 (1986).

    Google Scholar 

  7. R. B. Thompson and D. O. Thompson, Past experiences in the development of tests for adhesive bond strength,J. Adhesion Sci. Technol. 5:583–599 (1991).

    Google Scholar 

  8. A. M. Lindrose, Ultrasonic wave and moduli changes in a curing epoxy resin,Exp. Mech. 227–232 (1978).

  9. S. I. Rokhlin, M. Hefets, and M. Rosen, An ultrasonic interface wave method for predicting the strength of adhesive bonds,J. Appl. Phys. 52:2847–2851 (1981).

    Google Scholar 

  10. R. E. Challis, T. Alper, R. T. Cocker, A. K. Holmes, and J. D. H. White, Ultrasonic absorption and velocity dispersion measurements in thin adhesive layers,Ultrasonics 29:22–28 (1991).

    Google Scholar 

  11. R. B. Thompson, G. A. Alers, D. O. Thompson, and M. S. Teunison, Dispersion of flexural and elastic waves in honeycomb sandwich panels,J. Acoust. Soc. Am. 57:1119–1127 (1975).

    Google Scholar 

  12. G. A. Budenkov, Y. V. Volepov, N. G. Gurepkova, and T. A. Gintina, Dispersion relation for interface waves in a three-layered medium,Sov. J. Nondestr. Test. 13:272–276 (1977).

    Google Scholar 

  13. S. I. Rokhlin, Interface properties characterization by interface and Lamb waves, inReview of Progress in Quantitative NDE, Vol. 5, D. O. Thompson and D. E. Chimenti, eds. (Plenum, New York, 1986), pp. 1301–1308.

    Google Scholar 

  14. A. K. Mal, P. C. Xu, and Y. Bar-Cohen, Analysis of leaky Lamb waves in bonded plates,Int. J. Engng. Sci. 27:779–791 (1989).

    Google Scholar 

  15. Y. Bar-Cohen, A. K. Mal, and C.-C. Yin, Ultrasonic evaluation of adhesive bonding,J. Adhesion 29:257–274 (1989).

    Google Scholar 

  16. M. R. Karim, A. K. Mal, and Y. Bar-Cohen, Inversion of leaky Lamb wave data by simplex algorithm,J. Acoust. Soc. Am. 88:482–491 (1990).

    Google Scholar 

  17. Y. Bar-Cohen and A. K. Mal, Characterization of adhesive bonding using leaky Lamb waves, inReview of Progress in Quantitative NDE, Vol. 9, D. O. Thompson and D. E. Chimenti, eds. (Plenum, New York, 1990), pp. 1271–1277.

    Google Scholar 

  18. P. C. Xu, A. K. Mal, and Y. Bar-Cohen, Inversion of leaky Lamb wave data to determine cohesive properties of bonds,Int. J. Engng. Sci. 28:331–346 (1990).

    Google Scholar 

  19. A. K. Mal, P. C. Xu, and Y. Bar-Cohen, Leaky Lamb waves for the ultrasonic nondestructive evaluation of adhesive bonds,J. Eng. Mater. Technol. 112:255–259 (1990).

    Google Scholar 

  20. A. Jungman, Ph. Guy, A. Nayfeh, and G. Quentin, Characterization of glued bonds using ultrasonic reflected beam, inReview of Progress in Quantitative NDE, Vol. 10, D. O. Thompson and D. E. Chimenti, eds. (Plenum, New York, 1991), pp. 1319–1326.

    Google Scholar 

  21. A. Pilarski, J. L. Rose, J. Ditri, D. Jiao, and K. Rajana, Lamb wave mode selection for increased sensitivity to interfacial weaknesses of adhesive bonds, inReview of Progress in Quantitative NDE, Vol. 12, D. O. Thompson and D. E. Chimenti, eds. (Plenum, New York, 1993), pp. 1579–1585.

    Google Scholar 

  22. G. A. Alers and R. B. Thompson, Application of trapped modes in layered media to the testing of adhesive bonds, 1976 Ultrasonics Symposium Proceedings, IEEE Cat. #76 CH1120-5SU (1976).

  23. A. Pilarski, Ultrasonic wave propagation in a layered medium under different boundary conditions,Arch. Acoust. 7:61–70 (1982).

    Google Scholar 

  24. S. I. Rokhlin, M. Hefets, and M. Rosen, An elastic interface wave guided by a thin film between two solids,J. Appl. Phys. 51:3579–3582 (1980).

    Google Scholar 

  25. P. B. Nagy and L. Adler, Nondestructive evaluation of adhesive joints by guided waves,J. Appl Phys. 66:4658–4663 (1989).

    Google Scholar 

  26. P. B. Nagy, D. V. Rypien, and L. Adler, Dispersive properties of leaky interface waves in adhesive layers, inReview of Progress in Quantitative NDE, Vol. 9, D. O. Thompson and D. E. Chimenti, eds. (Plenum, New York, 1990), pp. 1247–1255.

    Google Scholar 

  27. R. O. Claus and R. A. Kline, Adhesive bondline interrogation using Stoneley wave methods,J. Appl. Phys. 50:8066–8069 (1979).

    Google Scholar 

  28. D. A. Lee and D. M. Corbly, Use of interface waves for nondestructive inspection,IEEE Trans. Sonics Ultrasonics SU-24:206–212 (1977).

    Google Scholar 

  29. V. Kumar, Attenuation and velocity of waves propagating along a steel-steel interface,J. Appl. Phys. 54:1141–1143 (1983).

    Google Scholar 

  30. P. G. Partridge, Diffusion Bonding of Metals, AGARD, LS 154, pp. 5.1–5.23 (1987).

    Google Scholar 

  31. M. J. S. Lowe and P. Cawley, The influence of the modal properties of a stiff layer embedded in a solid medium on the field generated by a finite sized transducer,J. Acoust. Soc. Am. (submitted).

  32. D. C. Worlton, Ultrasonic testing with Lamb waves,Nondestr. Testing 15:218–222 (1957).

    Google Scholar 

  33. D. E. Chimenti and S. I. Rokhlin, Relationship between leaky Lamb modes and reflection coefficient zeroes for a fluid-coupled elastic layer,J. Acoust. Soc. Am. 88:1603–1611 (1990).

    Google Scholar 

  34. S. I. Rokhlin, Lamb wave interaction with lap-shear adhesive joints: Theory and experiment,J. Acoust. Soc. Am. 89:2758–2765 (1991).

    Google Scholar 

  35. P. B. Nagy and L. Adler, A novel technique for interface wave generation, inPhysical Acoustics, O. Leroy and M. A. Breazeale, eds. (Plenum Press, New York, 1991).

    Google Scholar 

  36. P. Cawley, T. P. Pialucha, and M. J. S. Lowe, A comparison of different methods for the detection of a weak adhesive/adherend interface in bonded joints, inReview of Progress in Quantitative NDE, Vol. 12, D. O. Thompson and D. E. Chimenti, eds. (Plenum, New York, 1993), pp. 1531–1537.

    Google Scholar 

  37. B. Drinkwater, T. Pialucha, and P. Cawley, The transmission of ultrasound across solid-solid interfaces: Practical measurement considerations, inReview of Progress in Quantitative NDE, Vol. 13 D. O. Thompson and D. E. Chimenti, eds. (Plenum, New York, 1994).

    Google Scholar 

  38. T. P. Pialucha and P. Cawley, The reflection of ultrasound from interface layers in adhesive joints, inReview of Progress in Quantitative NDE, Vol. 10 D. O. Thompson and D. E. Chimenti, eds. (Plenum, New York, 1991), pp. 1303–1309.

    Google Scholar 

  39. P. B. Nagy, Ultrasonic detection of kissing bonds at adhesive interfaces,J. Adhesion Sci. Technol. 5:619–630 (1991).

    Google Scholar 

  40. P. N. Dewen and P. Cawley, The Practical Application of Ultrasonic Spectroscopy for the Measurement of the Cohesive Properties of Adhesive Joints, NDT & E International, Vol. 25, pp. 65–75 (1992).

    Google Scholar 

  41. P. N. Dewen and P. Cawley, Ultrasonic determination of the cohesive properties of bonded jonts by measurement of reflection coefficient and bondline transit time,J. Adhesion 40:207–227 (1993).

    Google Scholar 

  42. W. L. Pilant, Complex roots of the Stoneley wave equation,Bull. Seism. Soc. Am. 62:285–299 (1972).

    Google Scholar 

  43. R. B. Thompson, F. J. Margetan, J. H. Rose, and N. K. Batra, Effects of interstitial oxygen on the ultrasonic properties of titanium alloys, inReview of Progress in Quantitative NDE, Vol. 11, D. O. Thompson and D. E. Chimenti, eds. (Plenum, New York, 1992), pp. 1725–1732.

    Google Scholar 

  44. L. J. H. Brasche, F. J. Margetan, and R. B. Thompson, Sample preparation techniques and material property measurements of hard alpha titanium samples, inReview of Progress in Quantitative NDE, Vol. 11, D. O. Thompson and D. E. Chimenti, eds. (Plenum, New York, 1992), pp. 1733–1738.

    Google Scholar 

  45. M. J. S. Lowe, Plate Waves for the NDT of Diffusion Bonded Titanium, PhD thesis, University of London (1993).

  46. M. J. S. Lowe and P. Cawley, The detection of a brittle layer at the bondline in diffusion bonded titanium, inReview of Progress in Quantitative NDE, Vol. 12, D. O. Thompson and D. E. Chimenti, eds. (Plenum, New York, 1993), pp. 1653–1659.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lowe, M.J.S., Cawley, P. The applicability of plate wave techniques for the inspection of adhesive and diffusion bonded joints. J Nondestruct Eval 13, 185–200 (1994). https://doi.org/10.1007/BF00742584

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00742584

Key words

Navigation