Oxidation of Metals

, Volume 12, Issue 2, pp 173–181 | Cite as

The penetration by sulfur of NiO scales growing on nickel

  • M. C. Pope
  • N. Birks
Article

Abstract

The transport of sulfur through growing scales may occur by chemical (solution and diffusion) or physical (gas molecule permeation) mechanisms. Both possibilities are examined theoretically for the case of NiO growing on nickel. Experiments are designed and carried out to establish which mechanism plays the major role in sulfur transport. The results indicate that the physical mechanism is likely to be predominant.

Key words

oxidation hot corrosion sulfidation preoxidation scale penetration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. C. Pope and N. Birks,Oxid. Met. 12, 191 (1978).Google Scholar
  2. 2.
    V. N. Konev, V. N. Chebotin, N. V. Suntsov, and L. I. Statseva,Zashch. Met. 6, 448 (1970).Google Scholar
  3. 3.
    M. R. Wootton and N. Birks,Corros. Sci. 12, 829 (1972).Google Scholar
  4. 4.
    H. C. Chao, Y. E. Smith, and L. H. Van Vlack,Trans. Am. Inst. Min. Metall. Pet. Eng. 227, 796 (1963).Google Scholar
  5. 5.
    G. R. St. Pierre and J. Chipman,Trans. Am. Inst. Min. Metall. Pet. Eng. 206, 700 (1968).Google Scholar
  6. 6.
    R. A. Sharma and F. D. Richardson,Trans. Am. Inst. Min. Metall. Pet. Eng. 233, 1586 (1965).Google Scholar
  7. 7.
    G. J. W. Kor and F. D. Richardson,Trans. Inst. Min. Met. London,79, C148 (1970).Google Scholar
  8. 8.
    G. J. W. Kor and F. D. Richardson,J. Iron Steel Inst., London,206, 700 (1968).Google Scholar
  9. 9.
    G. J. W. Kor,Metall. Trans. 3, 2343 (1972).Google Scholar
  10. 10.
    G. J. W. Kor and E. T. Turkdogan,Metall. Trans. 2, 1571 (1971).Google Scholar
  11. 11.
    H. E. McCoy,Corrosion 21, 84 (1965).Google Scholar
  12. 12.
    W. B. Jepson, J. E. Antill, and J. B. Warburton,Br. Corros. J. 1, 15 (1965).Google Scholar
  13. 13.
    H. Meurer and H. Schmalzried,Arch. Eisenhuettenwes. 42, 87 (1971).Google Scholar
  14. 14.
    C. T. Fujii and R. A. Meussner,J. Electrochem. Soc. 114, 435 (1967).Google Scholar
  15. 15.
    N. Birks,Br. Corros. J. 3, 56 (1968).Google Scholar
  16. 16.
    A. Rahmel,Werkst. Korros. 16, 837 (1956).Google Scholar
  17. 17.
    J. Manenc, J. Band, and J. P. Plumensi,Werkst. Korros. 23, 876 (1972).Google Scholar
  18. 18.
    D. Bruce and P. Hancock,J. Inst. Met. 97, 140, 148 (1969).Google Scholar
  19. 19.
    D. Bruce and P. Hancock,J. Iron Steel Inst. 208, 1021 (1970).Google Scholar
  20. 20.
    P. Hancock,Werkst. Korros. 21, 1002 (1970).Google Scholar
  21. 21.
    R. H. Chang, W. Stewart, and J. B. Wagner, Jr., “Reactivity of Solids,” Proceedings of the 7th International Symposium, Bristol, July 1972, p. 231.Google Scholar
  22. 22.
    D. R. Chang, R. Nemoto, and J. B. Wagner Jr.,Metall. Trans. 7A, 803 (1976).Google Scholar
  23. 23.
    M. C. Pope, J. H. Woodhead, and N. Birks, to be published.Google Scholar
  24. 24.
    T. Flatley and N. Birks,J. Iron Steel Inst. 209, 523 (1971).Google Scholar
  25. 25.
    C. B. Alcock, M. G. Hocking, and S. Zador,Corros. Sci. 9, 111 (1969).Google Scholar
  26. 26.
    M. R. Wootton, Ph.D. thesis, Sheffield University (1971).Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • M. C. Pope
    • 1
  • N. Birks
    • 2
  1. 1.British Steel CorporationMiddlesbroughEngland
  2. 2.Department of MetallurgySheffield UniversityEngland

Personalised recommendations