Algebra and Logic

, Volume 33, Issue 2, pp 65–78 | Cite as

Irreducible periodic groups of finitary transformations

  • V. V. Belyaev
Article

Abstract

The structure of periodic irreducible primitive groups of finitary transformations of an infinitedimensional space is investigated. Every such group is shown to be a holomorph of some simple group whose action on a space is irreducible and primitive also.

Keywords

Mathematical Logic Simple Group Periodic Group Primitive Group Finitary Transformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. V. Belyaev, “The structure ofp-groups of finitary transformations,”Algebra Logika,31, No. 5, 453–478 (1992).Google Scholar
  2. 2.
    V. V. Belyaev, “Locally solvable periodic groups of finitary transformations,”Algebra Logika,31, No. 6, 569–591 (1992).Google Scholar
  3. 3.
    V. V. Belyaev, “Semisimple periodic groups of finitary transformations,”Algebra Logika,32, No. 1, 17–33 (1993).Google Scholar
  4. 4.
    V. V. Belyaev, “Local characterizations of periodic simple groups of finitary transformations,”Algebra Logika,32, No. 3, 231–250 (1993).Google Scholar
  5. 5.
    V. V. Belyaev, “Locally finite Chevalley groups,” in:Studies on Group Theory [in Russian], Sverdlovsk (1984), pp. 39-50.Google Scholar
  6. 6.
    Yu. I. Merzlyakov,Rational Groups [in Russian], Nauka, Moscow (1980).Google Scholar
  7. 7.
    R. Steinberg,Lectures on Chevalley Groups, Yale University Notes (1967).Google Scholar
  8. 8.
    M. I. Kargapolov and Yu. I. Merzlyakov,Foundations of Group Theory [in Russian], Nauka, Moscow (1982).Google Scholar
  9. 9.
    L. A. Skornyakov,Elements of Structure Theory [in Russian], Nauka, Moscow (1970).Google Scholar
  10. 10.
    H. Wielandt,Unendliche Permutationsgruppen, Vorlesungen, Tübingen (1959–1960).Google Scholar
  11. 11.
    J. I. Hall, “Infinite alternating groups as finitary linear transformation groups,”J. Algebra,119, No. 2, 337–359 (1988).Google Scholar
  12. 12.
    R. E. Phillips, “The structure of Groups of Finitary Transformations,”J. Algebra,119, No. 2, 400–448 (1988).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • V. V. Belyaev

There are no affiliations available

Personalised recommendations