Letters in Mathematical Physics

, Volume 35, Issue 1, pp 85–89 | Cite as

Star products on compact pre-quantizable symplectic manifolds

  • Victor Guillemin
Article

Abstract

We define in this Letter, a notion of ‘representation’ for a star product (equipped with a star-compatible trace) and show that every compact pre-quantizable symplectic manifold admits a representable star product.

Mathematics Subject Classification (1991)

58F05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boutet-de-Monvel, L.: On the index of Toeplitz operators of several complex variables,Invent. Math. 50, 249–272 (1979).Google Scholar
  2. 2.
    Boutet-de-Monvel, L. and Guillemin, V.:The Spectral Theory of Toeplitz Operators, Ann. of Math. Studies 99, Princeton Univ. Press, Princeton, NJ; 1981.Google Scholar
  3. 3.
    Connes, A., Flato, M. and Sternheimer, D.: Closed star products and cyclic cohomology,Lett. Math. Phys. 24, 1–12 (1992).Google Scholar
  4. 4.
    Fedosov, B. V.: A simple geometrical construction of deformation quantization,J. Differential Geom. (to appear).Google Scholar
  5. 5.
    Fedosov, B. V.: Proof of the index theorem for deformation quantization, Max-Planck-Gesellshaft zur Forderung der Wissenschaft, Bonn (1994).Google Scholar
  6. 6.
    Kostant, B.: Quantization and unitary representations, inLectures in Modern Analysis and Applications, Lecture Notes in Math. 170, Springer-Verlag, New York, 1970, 87–208.Google Scholar
  7. 7.
    Lecomte, P. B. and De Wilde, M.: Existence of star products and formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds,Lett. Math. Phys. 7, 487–496 (1983).Google Scholar
  8. 8.
    Omori, H., Maede, Y., and Yoshioka, A.: Existence of a closed star-product,Lett. Math. Phys. 26, 285–294 (1992).Google Scholar
  9. 9.
    Souriau, J.-M,Structures des systémès dynamiques, Dunod, Paris, 1970.Google Scholar
  10. 10.
    Weinstein, A.,Séminaire Bourbaki, Paris, June 1994.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Victor Guillemin
    • 1
  1. 1.Department of MathematicsMITCambridgeUSA

Personalised recommendations