Skip to main content
Log in

Perturbed periodic Hamiltonians: Essential Spectrum and exponential decay of eigenfunctions

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Spectral properties of − Δ +V(x), whereV(x) lies in a ‘neighbourhood’ of the periodic case and describes various ‘models of disorder’, are studied. We prove the exponential decay of generalized eigenfunctions corresponding to energies in the resolvent set of the ‘unperturbed’ periodic Hamiltonian, as well as the stability of the essential spectrum for the ‘dislocation disorder’ in two dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berthier-(Boutet de Monvel), A.,Spectral Theory and Wave Operators for the Schrödinger Equation, Research Notes in Mathematics 71, Pitman, London, 1982, and Nauka, Moscow, to appear.

    Google Scholar 

  2. Reed, M. and Simon, B.,Methods of Modern Mathematical Physics IV: Analysis of Operators, Academic Press, New York, 1978.

    Google Scholar 

  3. Skriganov, M. M.,Invent. Math. 10, 107–129 (1985).

    Google Scholar 

  4. Carmona, R. and Lacroix, J.,Spectral Theory of Random Schrödinger Operators, Birkhäuser, Boston, 1990.

    Google Scholar 

  5. Pastur, L., Figotin, A.,Spectra of Random and Almost Periodic Operators, Springer, Berlin, 1992.

    Google Scholar 

  6. Ziman, J. M.,Models of Disorder, Cambridge University Press, Cambridge, 1979.

    Google Scholar 

  7. Agmon, S.,Lectures on Exponential Decay of Solutions of Second Order Elliptic Equations, Princeton University Press, Princeton, NJ, 1982.

    Google Scholar 

  8. Herbst, I.,Comm. Math. Physics 158, 517–536 (1993).

    Google Scholar 

  9. Boutet de Monvel-Berthier, A. and Georgescu, V.,J. Funct. Anal. 71, 309–338 (1987).

    Google Scholar 

  10. Wang, X. P.,Ann. Inst. Henri Poincaré 43, 269 (1985).

    Google Scholar 

  11. Parisse, B.,Ann. Inst. Henri Poincaré 56, 235 (1992).

    Google Scholar 

  12. Perry, P. A., A remark on continuous eigenfunctions ofN-body Schrödinger operators, in I. W. Knowles and R. T. Lewis (eds),Differential Equations, North-Holland, Amsterdam, 1984.

  13. Combes, J.-M. and Thomas, L.,Comm. Math. Physics 34, 251 (1973).

    Google Scholar 

  14. Cycon, H. L., Froese, R. G., Kirsch, W., and Simon, B.,Schrödinger Operators, Springer, Berlin 1987.

    Google Scholar 

  15. Froese, R. G., Herbst, I., Hoffmann-Ostenhof, M., and Hoffmann-Ostenhof, T.,Comm. Math. Phys. 87, 265 (1982).

    Google Scholar 

  16. Nenciu, Gh.,Rev. Mod. Phys. 63, 91–127 (1991).

    Google Scholar 

  17. Helffer, B. and Sjöstrand, J., Equation de Schrödinger avec champ magnétique et équation de Harper, in H. Holden and A. Jensen (eds),Schrödinger Operators, Lecture Notes in Physics 345, Springer, Berlin, 1989, p. 118.

    Google Scholar 

  18. Shubin, M. A.,Astérisque 207, 37 (1992).

    Google Scholar 

  19. Schechter, M.,Spectra of Differential Operators, 2nd edn, North-Holland, Amsterdam, 1986.

  20. Pantelides, S. T.,Rev. Modern Phys. 50, 797–858 (1978).

    Google Scholar 

  21. Bentosela, F.,Comm. Math. Phys. 46, 153 (1976).

    Google Scholar 

  22. Agmon, S., On positive solutions of elliptic equations with periodic coefficients in ℝn; spectral results and extensions to elliptic operators on Riemannian manifolds, in I. W. Knowles and R. T. Lewis (eds)Differential Equations, North-Holland, Amsterdam, 1984, pp. 7-17.

  23. Gubanov, A. I.,JETP 23, 484 (1955).

    Google Scholar 

  24. Nenciu, A. and Nenciu, Gh.,J. Phys. A. 14, L.109-L.112 (1981).

    Google Scholar 

  25. Nenciu, A., PhD. Thesis, ICEFIZ, Bucharest 1984 (published inStudii si cercetan de Fizica 39, 494 (1987).

    Google Scholar 

  26. Kato, T.,Perturbation Theory for Linear Operators, 2nd edn, Springer, Berlin 1970.

    Google Scholar 

  27. Simon, B.,Quantum Mechanics for Hamiltonians Defined as Quadratic Forms, Princeton University Press, Princeton, NJ, 1971.

    Google Scholar 

  28. Simon, B., Spectrum and continuous eigenfunctions of Schrödinger operators,J. Funct. Anal. 42, 347–355 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Monvel-Berthier, A.B., Nenciu, A. & Nenciu, G. Perturbed periodic Hamiltonians: Essential Spectrum and exponential decay of eigenfunctions. Lett Math Phys 34, 119–133 (1995). https://doi.org/10.1007/BF00739091

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00739091

Mathematics Subject Classifications (1991)

Navigation