The introduction of Superluminal Lorentz transformations: A revisitation

Abstract

We revisit the introduction of the Superluminal Lorentz transformations which carry from “bradyonic” inertial frames to “tachyonic” inertial frames, i.e., which transform time-like objects into space-like objects, andvice versa. It has long been known that special relativity can be extended to Superluminal observers only by increasing the number of dimensions of the space-time or—which is in a sense equivalent—by releasing the reality condition (i.e., introducing also imaginary quantities). In the past we always adopted the latter procedure. Here we show the connection between that procedure and the former one. In other words, in order to clarify the physical meaning of the imaginary units entering the classical theory of tachyons, we have temporarily to call into play anauxiliary six-dimensional space-time M(3, 3); however, we are eventually able to go back to the four-dimensional Minkowski space-time. We revisit the introduction of the Superluminal Lorentz transformations also under another aspect. In fact, the generalized Lorentz transformations had been previously written down in a form suited only for the simple case of collinear boosts (e.g., they formed a group just for collinear boosts). We express now the Superluminal Lorentz transformations in a more general form, so that they constitute a group together with the ordinary—orthochronousand antichronous—Lorentz transformations, and reduce to the previous form in the case of collinear boosts. Our approach introduces either real or imaginary quantities, with exclusion of (generic) complex quantities. In the present context, a procedure—in two steps—for interpreting the imaginary quantities is put forth and discussed. In the case of a chain of generalized Lorentz transformations, such a procedure (when necessary) is to be applied only at the end of the chain. Finally, we justify why we call “transformations” also the Superluminal ones.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    E. Recami and R. Mignani,Lett. Nuovo Cimento 4, 144 (1972) and references therein; M. Pavsic, The Extended Special Theory of Relativity, preprint (Univ. of Ljubljana, 1971), unpublished.

    Google Scholar 

  2. 2.

    E. Recami and R. Mignani,Riv. Nuovo Cimento 4, 209, 398 (1974) and references therein;Lett. Nuovo Cimento 8, 110 (1973).

    Google Scholar 

  3. 3.

    E. Recami, inTachyons, Monopoles, and Related Topics, E. Recami, ed. (North-Holland, Amsterdam, 1978), p. 3; H. C. Corben,Nuovo Cimento A 29, 415 (1975).

    Google Scholar 

  4. 4.

    E. Recami and W. A. Rodrigues,Found. Phys. 12, 709 (1982); G. D. Maccarrone and E. Recami,Lett. Nuovo Cimento 34, 251 (1982); E. Recami, Chap. 16 inA. Einstein 1879–1979: Relativity, Quanta and Cosmology in the Development of the Scientific Thought of Albert Einstein,” F. de Finis, ed. (Johnson Reprint Co., New York, 1979), Vol. 2, pp. 537–597; E. Recami, Chap. 18 inAstrofisica e Cosmologia, Gravitazione, Quanti e Relatività nello sviluppo del pensiero scientifico di Albert Einstein, M. Pantaleo, ed. (Giunti-Barbera, Florence, 1979), pp. 1021–1097.

    Google Scholar 

  5. 5.

    P. Caldirola and E. Recami, inItalian Studies in the Philosophy of Science, M. Dalla Chiara, ed. (Reidel, Dordrecht and Boston, 1980), pp. 249–298; E. Recami,Found. Phys. 8, 329 (1978).

    Google Scholar 

  6. 6.

    E. Recami and G. D. Maccarrone,Lett. Nuovo Cimento 28, 151 (1980); P. Caldirola, G. D. Maccarrone, and E. Recami,Lett. Nuovo Cimento 29, 241 (1980); A. O. Barut, G. D. Maccarrone, and E. Recami,Nuovo Cimento A (in press); E. Recami, Are Classical Tachyons Subluminal Quantum Objects?Boll. Circolo Mat. Palermo (to appear).

    Google Scholar 

  7. 7.

    C. Somigliana,Rend. Accad. Naz. Lincei (Roma) 31, 53 (1922);Memorie Scelte (Lattes, Torino, 1936), p. 469; W. Rindler,Special Relativity (Oliver and Boyd, Edinburgh, 1966), p. 16; L. Parker,Phys. Rev. 188, 2287 (1969).

    Google Scholar 

  8. 8.

    M. T. Teli and V. K. Sutar,Lett. Nuovo Cimento 21, 127 (1978); M. T. Teli,Lett. Nuovo Cimento 22, 489 (1978).

    Google Scholar 

  9. 9.

    V. Gorini,Commun. Math. Phys. 21, 150 (1971), and references therein.

    Google Scholar 

  10. 10.

    R. Mignani and E. Recami,Lett. Nuovo Cimento 9, 357 (1974); K. T. Shah,Lett. Nuovo Cimento 18, 156 (1971); P. K. Smrz, Report INFN/AE-84/3 (Frascati, 1984).

    Google Scholar 

  11. 11.

    H. Minkowski, Space and Time (address delivered at the 80th Assembly of German Scientists and Physicians, Cologne, 21 September, 1908).

  12. 12.

    E. Tonti,On the Formal Structure of Physical Theories (CNR, Milano, 1975), p. 243, and references therein.

    Google Scholar 

  13. 13.

    R. Mignani and E. Recami,Lett. Nuovo Cimento 16, 449 (1976); G. D. Maccarrone and E. Recami,Lett. Nuovo Cimento 34, 251 (1982); M. Bunge,Br. J. Philos. Soc. 9, 39 (1959); J. Dorling,Am. J. Phys. 38, 539 (1970); N. Kalitzin,Multitemporal Theory of Relativity (Bulgarian Academy of Sciences, Sofia, 1975); P. Demers,Can. J. Phys. 53, 1687 (1975).

    Google Scholar 

  14. 14.

    P. T. Pappas, submitted toInt. J. Theor. Phys. (1976); E. A. B. Cole,Nuovo Cimento B 44, 157 (1978); G. Dattoli and R. Mignani,Lett. Nuovo Cimento 22, 65 (1978); V. Vysin,Lett. Nuovo Cimento 22, 76 (1978); P. T. Pappas,Lett. Nuovo Cimento 22, 601 (1978);29, 429 (1979); G. Ziino,Lett. Nuovo Cimento 24, 171 (1979); J. Strnad,Lett. Nuovo Cimento 25, 73 (1979);26, 535 (1979);J. Phys. A 13, L 389 (1980); E. A. Cole,Phys. Lett. A 75, 29 (1979);J. Phys. A 13, 109 (1980);Nuovo Cimento B 55, 269 (1980);Phys. Lett. A 76, 371 (1980);Lett. Nuovo Cimento 28, 171 (1980);Nuovo Cimento A 60, 1 (1980); M. Pavsic,Lett. Nuovo Cimento 30, 111 (1981);J. Phys. A 14, 3217 (1981); G. Ziino, submitted for publication; P. T. Pappas,Nuovo Cimento B 68, 111 (1982); C. E. Patty,Nuovo Cimento B 70, 65 (1982); E. Tonti,Appl. Math. Model. 1, 37 (1976); B. Jancewicz, Electromagnetism with Use of Bivectors (Wrocław, 1980), unpublished; C. P. Poole, H. A. Farach, and Y. Aharonov,Found. Phys. 10, 531 (1980); G. Sobczyk,Acta Phys. Pol. B 12, 407 (1981).

    Google Scholar 

  15. 15.

    R. Mignani and E. Recami,Nuovo Cimento A 30, 533 (1975);B 21, 210 (1974).

    Google Scholar 

  16. 16.

    C. Møller,The Theory of Relativity (Oxford University Press, Oxford, 1962), Sections 18–22, 45–46.

    Google Scholar 

  17. 17.

    A. F. Antippa,Phys. Rev. D 11, 724 (1975).

    Google Scholar 

  18. 18.

    R. Mignani and E. Recami,Lett. Nuovo Cimento 9, 357 (1974); A. Rachman and R. Dutheil,Lett. Nuovo Cimento 8, 611 (1973); S. Naranan,Lett. Nuovo Cimento 3, 623 (1972); H. D. Froning, Jr., to appear.

    Google Scholar 

  19. 19.

    L. Landau and E. Lifshitz,Theorie du Champ (Mir, Moscow, 1966), p. 19.

    Google Scholar 

  20. 20.

    G. D. Maccarrone, M. Pavšič, and E. Recami,Nuovo Cimento B (in press).

  21. 21.

    G. D. Maccarrone, M. Pavšič, and E. Recami,Nuovo Cimento B 73, 91 (1983); E. Recami and G. D. Maccarrone,Lett. Nuovo Cimento 37, 345 (1983); A. O. Barut, G. D. Maccarrone, and E. Recami,Nuovo Cimento A 71, 509 (1982); P. Caldirola, G. D. Maccarrone, and E. Recami,Lett. Nuovo Cimento 29, 241 (1980); E. Recami and G. D. Maccarrone,Lett. Nuovo Cimento 28, 151 (1980); P. K. Smrz, Perspective of Superluminal Lorentz Transformations, Report INFN/AE-84/3 (Frascati, 1984).

    Google Scholar 

  22. 22.

    G. D. Maccarrone, E. Recami, and M. Pavsic, in “Rendic. 2a Conf. Scient. Trienn. del C.S.F.N. e S.d.M.” (Regione Siciliana; Messina, 1982), p. 179.

  23. 23.

    R. Sachs and W. Wu,General Relativity for Mathematicians (Springer-Verlag, Berlin, 1980).

    Google Scholar 

  24. 24.

    C. Møller,The Theory of Relativity (Oxford University Press, Oxford, 1962), p. 234.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Maccarrone, G.D., Recami, E. The introduction of Superluminal Lorentz transformations: A revisitation. Found Phys 14, 367–407 (1984). https://doi.org/10.1007/BF00738808

Download citation

Keywords

  • Physical Meaning
  • Classical Theory
  • Reality Condition
  • Special Relativity
  • Present Context