Advertisement

Journal of Materials Science

, Volume 16, Issue 2, pp 345–354 | Cite as

Effects of tobermorite and calcium silicate hydrate (I) crystals formed within polymer concretes

  • T. Sugama
  • L. E. Kukacka
  • W. Horn
Papers

Abstract

In the development of hydrothermally stable vinyl-type polymer concretes (PC), the effect of calcium silicate hydrates produced by the hydrothermal reaction of an anhydrous cement-silica flour system used as a filler in the PC was determined. Results from measurements of the mechanical properties of PC specimens after exposure to a 25% brine solution at a temperature of 240° C for 10, 30 and 90 days were used to quantify these effects. In addition, X-ray diffraction, differential thermal analysis, and scanning electron microscopy were used to perform quantitiative and morphological analyses of hydrated calcium silicate compounds synthesized during exposure to hot brine of PC samples containing cements having molar ratios of CaO/SiO2 of 1.33, 0.99 and 0.54. The data indicated that 11.3 Å tobermorite and calcium silicate hydrate-(I)-type [C-S-H(I)] crystals produced from the hydrothermal reactions of cement having the lowest CaO/SiO2 ratio of 0.54 significantly affect the long-term hydrothermal stability of the composite. Exposure for approximately 30 days to a 240° C hydrothermal environment was required for synthesis of a highly crystalline tobermorite to occur on the amorphous polymer surfaces. Morphological examination of tobermorite revealed circular radiating crystals of diameter about 20μm.

Keywords

Differential Thermal Analysis Polymer Surface Calcium Silicate Hydrothermal Reaction Calcium Silicate Hydrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. E. Kukacka, J. Fontana, W. Horn andJ. Amaro, Alternate Materials of Construction for Geothermal Applications, Progress Report No. 10, Brookhaven National Laboratory, 50594, July–September, 1976.Google Scholar
  2. 2.
    L. E. Kukacka, T. Sugama, J. Fontana, W. Horn, A. Zeldin, N. Carciello andJ. Amaro, Alternate Materials of Construction for Geothermal Applications, Progress Report No. 14, Brookhaven National Laboratory, 50751, July–September, 1977.Google Scholar
  3. 3.
    L. E. Kukacka, J. Amaro, J. Fontana, T. Sugama, A. Zeldin, N. Carciello andW. Reams, Alternate Materials of Construction for Geothermal Applications, Progress Report No. 16, Brookhaven National Laboratory, 50925, April–September, 1978.Google Scholar
  4. 4.
    T. Sugama andL. E. Kukacka,J. Cement Concrete Res. 9 (1979) 69.Google Scholar
  5. 5.
    T. Sugama, L. E. Kukacka andW. Horn,ibid. 9 (1979) 461.Google Scholar
  6. 6.
    Idem, J. Appl. Polymer Sci. 24 (1979) 2121.Google Scholar
  7. 7.
    Idem, J. Cement Composites 2 (1979) 55.Google Scholar
  8. 8.
    Idem, J. Mater. Sci. 15 (1980) 1498.Google Scholar
  9. 9.
    Idem, J. Cement Concrete Res. 10 (1980) 413.Google Scholar
  10. 10.
    L. E. Kukacka, J. Fontana, T. Sugama, T. J. Rockett, R. S. Kalyoncu, D. K. Curtice, E. R. Fuller, A. Zeldin, N. Carciello, W. Reams, B. E. Simpson andD. M. Roy, Cementing of Geothermal Wells, Progress Report No. 11, Brookhaven National Laboratory, 51013, October–December, 1978.Google Scholar
  11. 11.
    S. Matsumoto, H. Segawa andY. Okumura,J. Jap. Assoc. Petroleum Technologists 41 (1976) 52.Google Scholar
  12. 12.
    J. P. Gallus, D. E. Pyle andL. T. Watters, Paper SPE 7591, Proceedings of the SPE 53rd Annual Fall Technical Conference, Houston, Texas, October, 1978.Google Scholar
  13. 13.
    G. L. Carter andK. D. Smith,J. Petroleum Technol. 10 (1958) 20.Google Scholar
  14. 14.
    G. L. Kalousek, Development of Cement for Geothermal Wells, Final Report, Brookhaven National Laboratory, 51024, March, 1979.Google Scholar
  15. 15.
    H. F. W. Taylor, “The Chemistry of Cements” Vol. 1 (Academic Press, London and New-York, 1964) pp. 185–203.Google Scholar
  16. 16.
    T. Yoshii andG. Sudo,Cements Gijutsu Nenpô 16 (1962) 97, in Japanese.Google Scholar
  17. 17.
    G. L. Kalousek,J. Cement Concrete Res. 6 (1976) 417.Google Scholar
  18. 18.
    S. A. S. El-Hemaly, T. Mitsuda andH. F. W. Taylor,ibid. 7 (1977) 429.Google Scholar
  19. 19.
    M. Sakiyama andT. Mitsuda,ibid. 7 (1977) 681.Google Scholar
  20. 20.
    C. F. Chan andT. Mitsuda,ibid. 8 (1978) 135.Google Scholar
  21. 21.
    T. Mitsuda andS. Banno,ibid. 7 (1977) 457.Google Scholar
  22. 22.
    H. F. W. Taylor,J. Chem. Soc. (1953) 163.Google Scholar
  23. 23.
    G. L. Kalousek andA. F. Prebus,J. Amer. Ceram. Soc. 41 (1958) 124.Google Scholar
  24. 24.
    A. Aithen andH. F. W. Taylor,J. Appl. Chem. 10 (1960) 7.Google Scholar
  25. 25.
    D. M. Roy,Amer. Min. 43 (1958) 1009.Google Scholar
  26. 26.
    D. A. Buckner, D. M. Roy andR. Roy,Amer. J. Sci. 258 (1960) 132.Google Scholar

Copyright information

© Chapman and Hall Ltd 1981

Authors and Affiliations

  • T. Sugama
    • 1
  • L. E. Kukacka
    • 1
  • W. Horn
    • 1
  1. 1.Process Sciences Division, Department of Energy and EnvironmentBrookhaven National LaboratoryUptonUSA

Personalised recommendations