Archives of Microbiology

, Volume 117, Issue 3, pp 239–245 | Cite as

Plasma-Membrane lipid composition and ethanol tolerance inSaccharomyces cerevisiae

  • D. Susan Thomas
  • J. A. Hossack
  • A. H. Rose


Populations of cells suspended anaerobically in buffered (pH 4.5) M ethanol remained viable to a greater extent when their plasma membranes were enriched in linoleyl rather than oleyl residues irrespective of the nature of the sterol enrichment. However, populations with membranes enriched in ergosterol or stigmasterol and linoleyl residues were more resistant to ethanol than populations enriched in campesterol or cholesterol and linoleyl residues. Populations enriched in ergosterol and cetoleic acid lost viability at about the same rate as those enriched in oleyl residues, while populations grown in the presence of this sterol and palmitoleic acid were more resistant to ethanol. Suspending cells in buffered ethanol for up to 24 h did not lower the ethanol concentration.

Key words

Plasma membrane Lipids Saccharomyces cerevisiae Ethanol tolerance Sterols Fatty-acyl residues 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alterthum, F., Rose, A. H.: Osmotic lysis of sphaeroplasts fromSaccharomyces cerevisiae grown anaerobically in media containing different unsaturated fatty acids. J. Gen. Microbiol.77, 371–382 (1973)Google Scholar
  2. Andreasen, A. A., Stier, T. J. B.: Anaerobic nutrition ofSaccharomyces cerevisiae. I. Ergosterol requirement for growth in a defined medium. J. Cell. Comp. Physiol.41, 23–36 (1953)Google Scholar
  3. Andreasen A. A., Stier, T. J. B.: Anaerobic nutrition ofSaccharomyces cerevisiae. II. Unsaturated fatty acid requirement for growth in a defined medium. J. Cell. Comp. Physiol.43, 271–281 (1954)Google Scholar
  4. Bretscher, M. S.: Phosphatidyl ethanolamine: differential labelling in intact cells and cell ghosts of human erythrocytes by a membrane-impermeable reagent. J. Mol. Biol.71, 523–528 (1972)Google Scholar
  5. Brown, C. M., Rose, A. H.: Fatty-acid composition ofCandida utilis as affected by growth temperature and dissolved-oxygen tension. J. Bacterol.99, 371–378 (1969)Google Scholar
  6. Bücher, Th., Redetzki, H.: A specific photometric method for ethyl alcohol through fermentation. Klin. Wochr.29, 615–616 (1951)Google Scholar
  7. Cartledge, T. G., Rose, A. H.: Properties of low density vesicles fromSaccharomyces cerevisiae. In: Proc. 3rd Int. Spec. Symp. Yeasts. (H. Suomalinen, C. Waller, eds.), pp. 251–259. Helsinki: Oy 1973Google Scholar
  8. Chen, P. S., Toribara, T. Y., Warner, H.: Micro-determination of phosphorus. Anal. Chem.28, 1756–1758 (1956)Google Scholar
  9. Demel, R. A., Bruckdorfer, K. R., van Deenen, L. L. M.: Structural requirements of sterols for the interaction with lecithin at the airwater interface. Biochim. Biophys. Acta255, 311–320 (1972)Google Scholar
  10. Fink, H., Kühles, R.: Beiträge zur Methylenblaufärbung der Hefezellen und Studien über die Permeabilität der Hefezellmembran. II. Mitteilung. Eine verbesserte Färbeflüssigkeit zur Erkennung von toten Hefezellen. Hoppe Seyler's Z. Physiol. Chem.218, 65–66 (1933)Google Scholar
  11. Fisher, K. A.: Analysis of membrane halves: cholesterol. Proc. Nat. Acad. Sci. Wash73, 173–176 (1975)Google Scholar
  12. Gray, W. D.: Studies on the alcohol tolerance of yeasts. J. Bacteriol.42, 561–574 (1941)Google Scholar
  13. Gray, W. D.: The sugar tolerance of four strains of distiller's yeast. J. Bacteriol.49, 445–452 (1945)Google Scholar
  14. Gray, W. D.: Further studies on the alcohol tolerance of yeast; its relationship to cell storage products. J. Bacteriol.55, 53–59 (1948)Google Scholar
  15. Hayashida, S., Feng, D. D., Hongo, M.: Function of the high concentration alcohol-producing factor. Agr. Biol. Chem.38, 2001–2006 (1974)Google Scholar
  16. Hayashida, S., Hongo, M.: The mechanism of formation of high concentration alcohol in Saké brewing. Abstr. 5th Int. Ferm. Symp. (H. Dellweg, ed.), p. 384, Berlin: Versuchs- und Lehranstalt für Spiritusfabrikation und Fermentationstechnologie 1976Google Scholar
  17. Hossack, J. A., Belk, D. M., Rose, A. H.: Environmentally-induced changes in the neutral lipids and intracellular vesicles ofSaccharomyces cerevisiae andKluyveromyces fragilis. Arch. Microbiol.114, 137–142 (1977)Google Scholar
  18. Hossack, J. A., Rose, A. H.: Fragility of plasma membranes inSaccharomyces cerevisiae enriched with different sterols. J. Bacteriol.127, 67–75 (1976)Google Scholar
  19. Hunter, K., Rose, A. H.: Lipid composition ofSaccharomyces cerevisiae as influenced by growth temperature. Biochim. Biophys. Acta260, 639–653 (1972)Google Scholar
  20. Ingram, L. O.: Adaptation of membrane lipids to alcohols. J. Bacteriol.125, 670–678 (1976)Google Scholar
  21. Kates, M., Hagen, P. O.: Influence of temperature on fatty acid composition of psychrophilic and mesophilicSerratia spp. Can. J. Biochem.42, 481–488 (1964)Google Scholar
  22. Kuksis, A.: Gas chromatography of neutral glycerides. In: Lipid chromatographic analysis, vol. 1 (G. V. Marinetti, ed.), pp. 239–337. London: Arnold 1967Google Scholar
  23. Letters, R.: Phospholipids of yeasts. In: Aspects of yeast metabolism (A. K. Mills, ed.), pp. 303–319. Oxford: Blackwells 1968Google Scholar
  24. Light, R. J., Lennarz, W. J., Bloch, K.: The metabolism of hydroxystearic acids in yeast. J. Biol. Chem.237, 1793–1800 (1962)Google Scholar
  25. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem.193, 265–275 (1951)Google Scholar
  26. Marchalonis, J. J.: An enzymic method for the trace iodination of immunoglobulins and other proteins. Biochem. J.113, 299–305 (1969)Google Scholar
  27. Mersel, M., Benenson, A., Doljanski, F.: Lactoperoxidase-catalysed iodination of surface membrane lipids. Biochem. Biophys. Res. Commun.70, 1166–1171 (1976)Google Scholar
  28. Patton, S., Keenan, T. W.: The milk fat globule membrane. Biochim. Biophys. Acta415, 273–309 (1975)Google Scholar
  29. Pecsok, R. L.: Analytical methods. In: Principles and practice of gas chromatography (R. L. Pecsok, ed.), pp. 135–150. New York: Wiley 1959Google Scholar
  30. Phillips, D. R., Morrison, M.: The arrangement of proteins in the human erythrocyte membrane. Biochem. Biophys. Res. Commun.40, 284–289 (1970)Google Scholar
  31. Phillips, M. C.: The physical state of phospholipids and cholesterol in monolayers, bilayers and membranes. Prog. Surf. Membr. Sci.5, 139–221 (1972)Google Scholar
  32. Phillips, M. C., Finer, E. G.: The stoichiometry and dynamics of lecithin-cholesterol clusters in bilayer membranes. Biochim. Biophys. Acta356, 199–206 (1974)Google Scholar
  33. Proudlock, J. W., Wheeldon, L. W., Jollow, D. J., Linnane, A. W.: Role of sterols inSaccharomyces cerevisiae. Biochim. Biophys. Acta152, 434–437 (1968)Google Scholar
  34. Schibeci, A., Rattray, J. B. M., Kidby, D. K.: Isolation and identification of yeast plasma membrane. Biochim. Biophys. Acta311, 15–25 (1973)Google Scholar
  35. Troyer, J. R.: A relationship between cell multiplication and alcohol tolerance in yeasts. Mycologia45, 20–39 (1953)Google Scholar
  36. Troyer, J. R.: Methanol tolerance of three strains ofSaccharomyces cerevisiae. Ohio J. Sci.55, 185–187 (1955)Google Scholar
  37. Tsai, K. H., Lenard, J.: Asymmetry of influenza virus membrane bilayer demonstrated with phospholipase C. Nature (Lond.)253, 554–555 (1975)Google Scholar
  38. Vallee, B. L., Hoch, F. L.: Zinc, a component of yeast alcohol dehydrogenase. Proc. Nat. Acad. Sci. Wash.41, 327–338 (1955)Google Scholar
  39. Wickerham, L. J.: Taxonomy of yeasts. I. Techniques of classification. US Dept. Agric. Tech. Bull no. 1029, US Dept. Agric., Washington D.C. (1951)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • D. Susan Thomas
    • 1
  • J. A. Hossack
    • 1
  • A. H. Rose
    • 1
  1. 1.Zymology Laboratory, School of Biological SciencesBath UniversityBathEngland

Personalised recommendations