Advertisement

Oxidation of Metals

, Volume 35, Issue 3–4, pp 279–294 | Cite as

Effect of Al on the high-temperature sulfidation of Fe-30Nb

  • Ge Wang
  • D. L. Douglass
  • F. Gesmundo
Article

Abstract

Fe-30Nb-Al alloys containing up to 9.1 wt.% Al were sulfidized at 0.01 atm sulfur vapor over the temperature range of 600–900°C. The sulfidation kinetics followed the parabolic rate law for all the alloys at all temperatures. The parabolic rate constants decreased with increasing Al content. Extremely slow sulfidation rates, even slower than that of pure Nb at low temperatures, were observed for alloys containing high Al (>4.8 wt.%). Duplex sulfide scales formed on alloys containing small amounts of Al. The outer layers were compact FeS, while the inner layers were a double sulfide, FexNb2S4,containing partially sulfidized intermetallic islands. Very thin scales formed on the alloys containing high Al, but the nature of the scales is unknown. The intercalation of Al into the Nb-sulfides and the associated charge transfer induced a blockage of the transport of iron through the sulfide as well as a greater incorporation of Nb into the scale.

Key words

Sulfidation Fe-Nb-Al alloys intercalation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. V. Carter, D. L. Douglass, and F. Gesmundo,Oxid. Met. 31, 341 (1989).Google Scholar
  2. 2.
    M. F. Chen and D. L. Douglass,Oxid. Met. 32, 185 (1989).Google Scholar
  3. 3.
    B. Gleeson, D. L. Douglass, and F. Gesmundo,Oxid. Met. 33, 425 (1990).Google Scholar
  4. 4.
    Ge Wang, R. V. Carter, and D. L. Douglass,Oxid. Met. 32, 273 (1989).Google Scholar
  5. 5.
    M. F. Chen, D. L. Douglass, and F. Gesmundo,Oxid. Met. 31, 237 (1989).Google Scholar
  6. 6.
    B. Gleeson, D. L. Douglass, and F. Gesmundo,Oxid. Met. 31, 209 (1989).Google Scholar
  7. 7.
    M. F. Chen and D. L. Douglass,Oxid. Met. 33, 103 (1990).Google Scholar
  8. 8.
    B. Gleeson, D. L. Douglass, and F. Gesmundo,Oxid. Met. 34, 123 (1990).Google Scholar
  9. 9.
    Ge Wang, D. L. Douglass, and F. Gesmundo,Oxid. Met. (in press).Google Scholar
  10. 10.
    V. L. Matuhin, I. A. Safin, V. F. Shamrai, and G. M. Leitus,Sov. Phys. Solid State 27, 117 (1985).Google Scholar
  11. 11.
    V. Raghavan, inPhase Diagram of Ternary Iron Alloys (Indian Institute of Technology, Delhi, 1988), p. 3.Google Scholar
  12. 12.
    M. Danielewski,Eurocorr '87 (preprints), p. 223.Google Scholar
  13. 13.
    F. Kadijk and F. Jellinek,J. Less-Common Metals 19, 421 (1969).Google Scholar
  14. 14.
    Ge Wang, B. Gleeson, and D. L. Douglass,Oxid. Met. 31, 415 (1989).Google Scholar
  15. 15.
    J. M. van den Berg and P. Cossee,Inorg. Chim. Acta 2, 143 (1968).Google Scholar
  16. 16.
    V. L. Matuhin, I. A. Safin, V. F. Shamrai, and G. M. Leitus,Sov. Phys. Solid State 30, 167 (1988).Google Scholar
  17. 17.
    B. S. Lee and R. A. Rapp,J. Electrochem. Soc. 131, 2998 (1984).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • Ge Wang
    • 1
  • D. L. Douglass
    • 1
  • F. Gesmundo
    • 2
  1. 1.Department of Materials Science and Engineering, School of Engineering and Applied ScienceUniversity of CaliforniaLos Angeles
  2. 2.Istituto di Chimica, Facolta di IngegneriaUniversità di GenovaGenovaItaly

Personalised recommendations