Skip to main content
Log in

Defect and transport properties of nonstoichiometric cobaltous sulfide

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Deviations from stoichiometry and chemical diffusion in cobaltous sulfide, Co 1−y S, have been studied as a function of temperature (923–1073 K) and sulfur activity (1–10 3 Pa) using a thermogravimetric technique. It has been shown that in agreement with Libowitz's model, the unusual dependence of nonstoichiometry in Co 1−y S on equilibrium sulfur pressure and temperature may be interpreted in terms of repulsive interaction of cation vacancies in this compound. The chemical diffusion coefficient has been found to be essentially pressure-independent and can be described as a function of temperature by the equation:

$$\tilde D = 0.29 exp\left( { - \frac{{{{110 \pm 8.4kJ} \mathord{\left/ {\vphantom {{110 \pm 8.4kJ} {mol}}} \right. \kern-\nulldelimiterspace} {mol}}}}{{RT}}} \right)$$

Recalculation of these results shows that the mobility of cation vacancies in cobaltous sulfide decreases with an increase in their concentrations, probably due to the site-blocking effect. The self-diffusion coefficient of cobalt in Co 1−y S, calculated from defect-diffusion coefficients and nonstoichiometry data, has been found to be very weakly dependent on sulfur activity, and its pressure and temperature dependence can be described by the following empirical equation:

$$D_{Co} = 8.9 \times 10^{ - 4} p_{s_2 }^{{1 \mathord{\left/ {\vphantom {1 {20}}} \right. \kern-\nulldelimiterspace} {20}}} exp\left( { - \frac{{{{93.6 \pm 7.5kJ} \mathord{\left/ {\vphantom {{93.6 \pm 7.5kJ} {mol}}} \right. \kern-\nulldelimiterspace} {mol}}}}{{RT}}} \right)$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Mrowec and J. Janowski, inSelected Topics in High Temperature Chemistry, O. Johannesen and A. G. Andersen, eds. (Elsevier, Amsterdam, 1989), p. 55.

    Google Scholar 

  2. S. Mrowec,Reactivity of Solids 5, 241 (1988).

    Google Scholar 

  3. S. Mrowec and K. Przybylski,Oxid. Met. 23, 107 (1985).

    Google Scholar 

  4. P. Kofstad,High Temperature Corrosion (Elsevier, Amsterdam, 1988), p. 425.

    Google Scholar 

  5. V. L. Hill and H. S. Meyer,High Temperature Materials Problems in Coal Gasification in High Temperature Corrosion in Energy Systems, M. F. Rothman, ed. (The Metallurgical Society of AIME, 1985), p. 29.

  6. S. Mrowec and K. Przybylski,High Temp. Mat. Processes 6, 1 (1984).

    Google Scholar 

  7. C. N. Rao and K. P. I. Phishardy,Progr. Solid State Chem. 10, 207 (1978).

    Google Scholar 

  8. H. Rau,J. Phys. Chem. Solids 37, 931 (1976).

    Google Scholar 

  9. H. Le Brusq, J. P. Delmaire, and F. Marion,C. R. Acad. Sci. (Paris) Ser. C. 273, 139 (1971).

    Google Scholar 

  10. T. Rosenquist,J. Iron Steel Inst. 176, 37 (1954).

    Google Scholar 

  11. M. Laffitte,Bull. Soc. Chim. France 1223 (1959).

  12. H. Rau,J. Phys. Chem. Solids 37, 425 (1976).

    Google Scholar 

  13. M. Danielewski, S. Mrowec, and A. Stokłosa,Solid State Ionics 1, 287 (1980).

    Google Scholar 

  14. G. G. Libowitz, inReactivity of Solids, J. B. Anderson, M. W. Roberts, and F. S. Stone, eds. (Chapman and Hall, London, 1972), p. 107.

    Google Scholar 

  15. J. B. Wagner, inMass Transport in Oxides (NBS, Special Publ. No 296, 1968), p. 65.

  16. M. Danielewski, S. Mrowec, and A. Stokłosa,Oxid. Met. 17, 77 (1982).

    Google Scholar 

  17. S. Mrowec,Defect and Diffusion in Solids (Elsevier, Amsterdam, 1980), p. 217.

    Google Scholar 

  18. P. Kofstad,Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides (Wiley-Interscience, New York, 1972) p. 108.

    Google Scholar 

  19. G. E. Murch,Atomic Diffusion Theory in Highly Defected Solids (Trans. Tech. S. A., Switzerland, 1980).

    Google Scholar 

  20. M. Wakihara, T. Uhida, M. Taniguchi,Mater. Res. Bull. 11, 973 (1976).

    Google Scholar 

  21. P. E. Childs, L. W. Laub, and J. B. Wagner, inMass Transport in Non-Metallic Solids (Proc. Brit. Ceram. Soc., 1971), Vol. 19, p. 29.

    Google Scholar 

  22. A. Wójtowicz and S. Mrowec,Solid State Ionics (in preparation).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danielewski, M., Mrowec, S. & Wójtowicz, A. Defect and transport properties of nonstoichiometric cobaltous sulfide. Oxid Met 35, 223–243 (1991). https://doi.org/10.1007/BF00738287

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00738287

Key words

Navigation