Advertisement

Oxidation of Metals

, Volume 35, Issue 3–4, pp 175–198 | Cite as

The sulfidation of manganese at low sulfur pressures at 700–950°C

  • W. Znamirowski
  • F. Gesmundo
  • S. Mrowec
  • M. Danielewski
  • K. Godlewski
  • F. Viani
Article

Abstract

The kinetics of manganese sulfidation has been studied in H2-H2S gas mixtures as a function of temperature (973–1223 K) and sulfur pressure (7×10−9to 3×10−4Pa), using a thermogravimetric technique. The sulfidation of manganese at low pressures follows the parabolic rate law similar to the behavior at high sulfur pressures (10−4–105Pa), although an initial nonparabolic incubation period, longer at lower sulfur pressures, was observed. The sulfidation rate constant increased with sulfur pressure and temperature according to the following empirical equation: kP=const P(S2)1/nexp(−E/RT)However, in disagreement with the results at high sulfur pressures, the exponent 1/n and the activation energy changed considerably with temperature and sulfur pressure. The results are analyzed in terms of a point-defect model of the single corrosion product—MnS—and of the possibility of a doping effect of MnS by hydrogen.

Key words

Manganese sulfidation hydrogen-doping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Kofstad,High Temperature Corrosion (Elsevier, London, 1988).Google Scholar
  2. 2.
    S. Mrowec and K. Prszybylski,High Temp. Mater. Proc. 6, 1 (1984).Google Scholar
  3. 3.
    M. Danielewski,Oxid. Met. 25, 51 (1986).Google Scholar
  4. 4.
    F. A. Elrefaie and W. W. Smeltzer,Oxid. Met. 16, 267 (1981).Google Scholar
  5. 5.
    K. Ohta, K. Fueki, and T. Mukaibo,Denki Kagaku 38, 11 (1970).Google Scholar
  6. 6.
    H. Buscail and J. P. Larpin,Oxid. Met. 30, 273 (1988).Google Scholar
  7. 7.
    M. Danielewski, S. Mrowec, and H. J. Grabke,Corros. Sci. 28, 1107 (1988).Google Scholar
  8. 8.
    P. Papajacovou, H. J. Grabke, and H. P. Schmidt,Werkst. u. Korros. 36, 320 (1985).Google Scholar
  9. 9.
    M. Perez and J. P. Larpin,Oxid. Met. 21, 299 (1984).Google Scholar
  10. 10.
    M. Danielewski and S. Mrowec,Solid State Ionics 17, 29 (1985).Google Scholar
  11. 11.
    M. Danielewski,Solid State Ionics 17, 286 (1985).Google Scholar
  12. 12.
    M. Danielewski, S. Mrowec, and H. J. Grabke,J. Mater. Sci. 25, 537 (1990).Google Scholar
  13. 13.
    K. Przybylski and A. Stoklosa,Oxid. Met. 9, 441 (1975).Google Scholar
  14. 14.
    F. A. Kroger,The Chemistry of Imperfect Crystals (North-Holland, Amsterdam, 1964).Google Scholar
  15. 15.
    C. Wagner, inAtom Movements (The Amer. Soc. for Metals, Metals Park, Ohio, 1951), p. 153.Google Scholar
  16. 16.
    H. Rau,J. Phys. Chem. Solids 39, 339 (1978).Google Scholar
  17. 17.
    T. Norby and P. Kofstad,Solid State Ionics 20, 169 (1988).Google Scholar
  18. 18.
    T. Norby, inSelected Topics in High Temperature Chemistry, O. Johannesen and A. G. Andersen, eds. (Elsevier, Amsterdam, 1989), p. 101.Google Scholar
  19. 19.
    B. S. Lee and R. A. Rapp,J. Electrochem. Soc. 131, 2998 (1984).Google Scholar
  20. 20.
    F. Gesmundo, F. Viani, and S. Mrowec,Solid State Ionics (in press).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • W. Znamirowski
    • 1
  • F. Gesmundo
    • 2
  • S. Mrowec
    • 1
  • M. Danielewski
    • 1
  • K. Godlewski
    • 1
  • F. Viani
    • 2
  1. 1.Institute of Materials ScienceAcademy of Mining and MetallurgyCracowPoland
  2. 2.Istituto di ChimicaUniversità di GenovaGenovaItaly

Personalised recommendations